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Abstract To deal with the challenges of the solar 
photovoltaic (PV) energy source due to the continuous 
variations of the climatic conditions such as temperature 
and solar radiation, output power prediction is one of the 
most important research trends nowadays. In this paper, a 
multilayer feedforward neural network (MLFFNN) is 
executed to foresee the power for a solar PV power station. 
The MLFFNN employs the temperature and radiation as the 
inputs and the power as the output. For training and testing 
the MLFFNN, data of 6 days are acquired from a real PV 
power station in Egypt. The first five days are employed to 
train the MLFFNN using Levenberg-Marquardt (LM) 
algorithm. While the data of the sixth day, are used to check 
the effectiveness and the generalization ability of the 
trained MLFFNN. The results prove that the trained 
MLFFNN is working very well and efficient to predict the 
PV output power correctly.  
 
Keywords: Power Prediction; Multilayer Feedforward NN; 
Solar PV; Levenberg-Marquardt Algorithm; MLFFNN 
Effectiveness.  

1 Introduction 

Energy crisis, environmental change, and rising pollution 
levels are critical issues that continue to drive the shift away 
from fossil fuels and toward renewable sources of energy. 
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The Paris Agreement, which was ratified by 196 countries 
in 2015 and came into force in November 2016, lays out a 
strategy for limiting global warming by driving countries to 
eradicate traditional energy sources (TESs) and depend on 
a circle economy [1],[2]. Energy planners and academics 
are working hard to connect different renewable energy 
sources (RESs) to the utility grid to reduce the TESs 
hazards.  

Different types of RESs depend on climatic conditions to 
produce electrical power [3], [4]. The energy generated by 
these RESs constantly changes according to the change in 
climatic conditions. The efficiency of wind turbines is 
based on the direction and the speed of the wind. For 
thermal solar and PV systems, solar irradiation, air 
temperature, and humidity are the most important factors 
that control the power generation and the PV system’s 
performance. The stability of the system's performance and 
electrical power is the major challenge for modern power 
grids. Forecasting the output power from various RESs is 
the main reason for the stability of the system, by helping 
to develop a control system that allows maintaining the 
energy produced at its specified value.  

Solar photovoltaic (PV) cells are one of the basic 
technologies for transforming solar radiation into electricity 
[5]. The intermittent and stochastic nature of solar energy 
has posed significant hurdles to power networks in terms of 
operation and control due to potentially unforeseen solar 
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grid fluctuations. The growth in the solar PV output power 
in the world from 2009 until 2019 increased from 23 GW 
to 127 GW respectively, as presented in Fig. 1, [6]. 

 
Fig. 1 Solar PV annual capacity, [6]. 

 
For controlling the utility grid indices during the 

integration of the solar PV output power, it is essential to 
develop accurate models for energy production forecasting 
based on the climate conditions. The prediction horizon can 
be defined as short-term, medium-term, or long-term which 
is considered the most important factor in deciding the 
suitable strategy for the prediction of solar PV power. These 
methods were executed based on mathematical analysis, 
one diode model using four parameters, a partial functional 
linear regression model, and finally machine learning such 
as support vector machine (SVM) and neural network (NN) 
algorithms. 

Hence, mathematical prediction methods [7]–[10] such 
as the persistence model and statistical approaches were 
used. However, these methods provided poor forecasting 
precision with high sensitivity to weather variations. On the 
other hand, methods established on machine learning such 
as SVM and NNs were proposed for predicting the PV 
power. In [11], the proposed method predicted one-hour 
ahead of PV output power based on SVM and random forest 
using various weather data such as temperature, humidity, 
rainfall, and wind speed. The NN has the properties that it 
can approximate any function and its ability of 
generalization under different conditions [12], [13]. In  
[14], three NN systems (Elman NN, feed-forward (FF)NN, 
and Generalized regression (GR)NN) were employed to 
forecast the solar PV system with several inputs like solar 
cell location, and solar radiation, the wind velocity, and the 
ambient temperature. Their acquired results confirmed that 
the NN systems produced accurate predictions with a root 

mean squared error (RMSE) of 0.25 in ELMAN NN and 
0.30 in FFNN and 0.426 in GRNN. The effectiveness and 
the generalization ability of these NNs were not considered 
and appraised under altered circumstances. Several  NN 
systems also were proposed for power prediction in the 
following references [15]–[17]. The main gap in these 
references was that the effectiveness of the NN under 
different conditions and data was not examined. In addition, 
the accuracy of the PV power prediction method needs 
further investigations and to be improved/increased.  

The main contribution and novelty of this paper is 
discussed as follows.  

According to the increased penetration of the solar PV 
substations into the utility grid, the necessity to integrate 
new advanced control methods to avoid the disturbances 
and operation interruptions of the electrical power or 
blackout under continuous variations of weather data. So, 
the machine learning algorithm is applied to forecast the 
upcoming output power with very limited error in the 
various real applications to ensure the well continuous 
operation. The precise solar PV power prediction is 
employed using a simple MLFFNN which is proposed and 
designed to predict the power using only two main inputs 
(the module temperature and the solar radiation). The 
training of this designed NN is performed using real data 
from a PV plant in Egypt and using Levenberg-Marquardt 
(LM) algorithm. To evaluate the prediction accuracy, the 
mean squared error (MSE) and the training error (TE) are 
used. Moreover, the generalization ability and the 
effectiveness of the trained MLFFNN are then checked and 
investigated using different data than the ones used for the 
training process. The results show that the MLFFNN is 
trained very well, and the MSE and the training error are 
very low and close to zero. Therefore, the trained MLFFNN 
can foresee the solar PV output power with high accuracy 
in any weather condition.  

The rest of the paper is divided as follows: section 2 
provides mathematical analysis for calculating the output 
power of the PV plant. In section 3, the design, the training, 
and the testing of the MLFFNN for predicting the power are 
presented in detail. The training process is carried out using 
data from five days obtained from the real PV power station 
in Egypt. Section 4 illustrates the effectiveness of the 
trained MLFFNN using data from the six day which is not 
used for the training. Section 5 summarizes the main points 
presented in this paper and gives some future work.  

2. Solar PV Power Calculations 
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To determine mathematically the electrical power 
acquired from the solar PV module, the  following 
equation is studied in [18], [19]: 

 
      𝑃 = 𝜂௦௖𝜏௚𝛼௦௖𝑅𝐴[1 − 𝜇௦௖(𝑇௦௖ − 𝑇௥)]       (1) 

 
where, 
𝜂௦௖: the reference efficiency of the solar PV cells 
𝜏௚: the glass transmissivity 
𝛼௦௖: the solar cell absorptivity 
𝑅: the solar radiation (𝑊/𝑚ଶ) 
𝐴: the total area of the solar cell (𝑚ଶ) 
𝜇௦௖ : the thermal coefficient of solar PV cell efficiency 
(%/℃)   
𝑇௦௖: the solar cell temperature (℃) 
𝑇௥: the reference temperature (℃) 

By using the MLFFNN, the solar PV electrical power can 
be projected without using the previous equations and 
reliant on the solar PV system parameters, as discussed 
below.   

3. MLFFNN Design, Training and Testing for Power 
Prediction 

In this paper, MLFFNN is used to predict the power of 
the solar PV plant. MLFFNN is a very simple structure 
compared with the other types of NNs [12], [20], [21]. In 
addition, it can be easily and successfully applied in various 
problem domains [22]–[24]. The MLFFNN was proposed 
in [25]–[27] due to the properties of the adaptivity, 
parallelism, and generalization that it presents as well as it 
can be linear or nonlinear. MLFFNN requires a large 
number of pairs of input and target for the training process 
[28], [29], but this disadvantage is considered in the current 
work. In subsection 3.1, the proposed MLFFNN is designed. 
The training of the designed MLFFNN is presented in 
subsection 3.2.  

3.1 MLFFNN Design 

For the design of the MLFFNN, the main followed 
criteria [30]–[34] are that the inputs of the NN should 
achieve high performance; the lowest MSE and the lowest 
TE. After many trials and experiments, it is found that the 
main inputs that achieve the high performance for the 
MLFFNN are the difference between the module (cell) 
temperature and the reference temperature (𝑇ௗ = 𝑇௠ − 𝑇௥) 
and the solar radiation (𝑅). The reference temperature 𝑇௥ 
is one of the PV module’s properties and it is a constant 
value equal to 25௢𝐶 and it is abstracted from the module 

temperature based on the recommendation provided in ref. 
[19]. Fig. 2 represents these inputs to the MLFFNN.  

The MLFFNN architecture composes of three layers; the 
input layer which contains the two inputs, the non-linear 
(hyperbolic tangent activation function) hidden layer, and 
the output layer which estimates the power of the PV power 
station 𝑃′ . This estimated power is compared with the 
actual one obtained from a real PV power station 𝑃. This 
structure is presented in Fig. 3.  

Moreover, the equations that represent the feedforward 
part of the designed MLFFNN are given as follows: 

 

Fig. 2 The inputs of the designed MLFFNN. (a) the temperature 

𝑇ௗ = 𝑇௠ − 𝑇௥ and (b) the solar radiation (𝑅). 

 

Fig. 3 The designed MLFFNN structure. It is taken from 

MATLAB.  
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        𝑦௝ = 𝜑௝൫ℎ௝൯ = 𝜑௝൫∑ 𝑤௝௜
ଶ
௜ୀ଴ 𝑥௜൯         (2)  

               
where, 𝑥௜ are the inputs to the MLFFNN. 𝑥଴ = 1, 𝑥ଵ =

𝑇ௗ, and 𝑥ଶ = 𝑅. 𝑦௝ is the output of the hidden neuron 𝑗. 
𝑤௝௜   is the weight between the input 𝑖  and the hidden 
neuron 𝑗.  

The activation function of the hidden layer is given by  
 
             𝜑௝൫ℎ௝൯ = tanh൫ℎ௝൯              (3)  
                           
The estimated power by the MLFFNN, 𝑃′, is given by  
                                                
𝑃′ =  𝜑௞(𝑂 ) = 𝜑௞൫∑ 𝑏ଵ௝

௡
௝ୀ଴ 𝑦௝  ൯ = ൫∑ 𝑏ଵ௝

௡
௝ୀ଴ 𝑦௝  ൯  (4) 

                          
where, 𝑏ଵ௝ is the weight between the hidden neuron 𝑗 and 
the output of the MLFFNN which is the estimated power 
𝑃′. 

The power 𝑃  is used only for training the MLFFNN 
architecture and the training error 𝑒(𝑡) should be as small 
as possible and it is given by the following equation: 
                                                      
              𝑒(𝑡) = 𝑃 − 𝑃′                     (5) 
                                      

The training process of the designed MLFFNN is 
discussed in detail in the next subsection.  

3.2 MLFFNN Training and Testing 

In this subsection, the training process of the MLFFNN 
is presented in detail. For training the designed MLFFNN, 
Levenberg-Marquardt (LM) learning is used. LM algorithm 
can implement the work in a fast way. This algorithm is a 
type of second-order optimization technique that has a 
strong theoretical basis and provides significantly fast 
convergence and it is considered an approximation to 
Newton’s Method [35], [36]. Compared with other learning 
algorithms, LM learning is applied because it has the trade-
off between the fast learning speed of the classical 
Newton’s method and the guaranteed convergence of the 
gradient descent [35], [37]. This learning is suitable for 
larger datasets as well as converges in fewer iterations and 
in a shorter time than the other training methods. The 
adjusted weights of the MLFFNN using LM algorithm are 
given by the following equation [12], [21]: 

                                                         
         𝑤௞ାଵ = 𝑤௞ − [H + λI]ିଵ𝑔             (6) 
                                          

where, H  and 𝑔  are Hessian and the gradient vector of 
the second order function respectively. I  is the identity 
matrix of the same dimensions as H  and λ  is a 

regularizing or loading parameter that forces the sum 
matrix (H + λI)  to be positive definite and safely well-
conditioned throughout the computation.  

The used data for training the MLFFNN are attained 
from a real PV power station in Egypt. The data for five 
days are used for training, whereas the data for the sixth day 
are used for checking the effectiveness of the trained 
MLFFNN. The total number of input-output pairs of the 
data used for training is 7200. From these data, 90% are 
used for the training process, 5% for validation, and 5% for 
testing. After trying many different weights’ initializations 
and the number of hidden neurons, the best parameters of 
the MLFFNN that realize the high performance are as 
follows: the number of hidden neurons is 70, the number of 
iterations is 38, and the MSE is 0.034817. The training 
MSE of the MLFFNN is presented in Fig. 4 with the MSE 
being very low and close to the value of zero.  

Fig. 4 The lowest MSE obtained during the training of the 
designed MLFFNN. 

Fig. 5 The approximation error between the estimated power 𝑃′ 
using the MLFFNN and the actual one 𝑃.  
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After the training of the MLFFNN is ended totally, the 
trained MLFFNN is tested and examined with the same 
dataset that was utilized for the training to get an insight 
into the approximation. The error between the estimated 
power by the MLFFNN 𝑃′  and the actual one obtained 
from a real PV power station 𝑃 is presented in Fig. 5.  

As presented in Fig. 5, the approximation error between 
the estimated power by the MLFFNN and the actual power 
is low which means that the MLFFNN is trained very well. 
The average value of the absolute error is 0.0779 MWh 
which is low, and the standard deviation is 0.1812. 

For more discussions, the estimated power by the 
MLFFNN and the actual one obtained from the real solar 
PV power station are compared. This comparison is 
presented in Fig. 6 which the convergence/approximation 
between the estimated power by the MLFFNN and the 
actual one is very good. This supports the results given in 
Fig. 5 and proves that the MLFFNN is trained very well.  

Fig. 6 The comparison between the estimated power by MLFFNN 

and the actual one obtained from the real PV power station.  

 

Fig. 7 The data of the sixth day to check the effectiveness of the 

trained MLFFNN. (a) the temperature 𝑇ௗ = 𝑇௠ − 𝑇௥ and (b) the 

solar radiation (𝑅). 

 

4. Trained MLFFNN Effectiveness and Generalization 

In this section, the trained MLFFNN is evaluated using 
different data than the data used for the training process. 
The data of the sixth day (the total number of input-output 
pairs is 1440) obtained from the real solar PV power station 
are used to test the effectiveness and the generalization 
ability of the trained MLFFNN. These data (temperature 
𝑇ௗ and radiation 𝑅) are presented in Fig. 7.  

The comparisons between the estimated power by the 
trained MLFFNN and the actual one on the sixth day are 
presented in Fig. 8 and Fig. 9. 

Fig. 8 The comparison between the estimated power by trained 

MLFFNN and the actual one, using different data from the data 

used for the training process. 

 

Fig. 9 The error between the estimated power by trained MLFFNN 

and the actual one, using different data from the data used for the 

training process. 
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Fig. 10 Comparing the resulted MSE from our proposed method 

with other previous published methods.   

Fig. 11 Comparing the number of the used inputs for our proposed 

method and other previous published methods.   
 

As shown in Fig. 8 and Fig. 9 the error between the 
estimated power by the trained MLFFNN and the actual 
power is low, when different data is used than the training 
data. Indeed, this proves that the MLFFNN is trained very 
well. Furthermore, this proves that the trained MLFFNN 
can work and generalize well under different conditions and 
data than the ones used for training. From the results 
obtained in section 3 and 4, we conclude that the trained 
MLFFNN is efficient to predict the power correctly.  

The proposed MLFFNN is compared with some other 
previous published methods which are used for the short-
term power prediction and presented in ref. [11], [14], [16], 
[38]. This comparison is presented in Fig. 10 and Fig. 11, 
in terms of the resulted MSE and number of used inputs. 

From Fig. 10, it is clear that our proposed method and the 
one presented in [16] achieve the lowest MSE compared 
with other methods. This means that our method and the 
one presented in [16] have the highest accuracy in 
predicting the solar PV output power. In Fig. 11, it is clear 
also that the number of inputs used with our method is the 
fewest compared with ones used with other methods. This 
prove that our method is the simplest. In addition, the 
calculations and the complexity are fewer. We found also 
that the generalization ability and the effectiveness under 
different conditions and cases are investigated and verified 
only with our proposed method. 

 
 
5. Conclusion and Future Work 

 
In this paper, a MLFFNN is proposed to predict the 

power for the solar PV power station. The temperature and 
radiation are its input, whereas the estimated power is its 
output. The data of the first five days are used for training. 
The training process leads to very low MSE and training 
error. This proves that the MLFFNN is trained well. The 
data of the sixth day, which are not used for the training, are 
used to check, and investigate the effectiveness of the 
trained MLFFNN. From this process, a low error is 
obtained between the estimated power by the trained 
MLFFNN and the actual power. This proves that the trained 
MLFFNN is working very well and efficient to predict the 
power correctly. In addition, the trained MLFFNN has the 
effectiveness and the generalization ability under different 
conditions and data. The correct power prediction using the 
trained MLFFNN can help to avoid the fall of the power 
that maybe happened in any time.  

The proposed method is compared with other previous 
published ones. The result from this comparison reveals 
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that the proposed method has the lowest MSE and number 
of used inputs. This means that the proposed method has the 
highest accuracy in predicting the solar PV output power. 
In addition, its complexity and calculations are fewer. 
Furthermore, we found that the generalization ability is 
checked and verified with the proposed method only. 

The promising results in this paper motivate us, in the 
near future, to use and compare other different types of NNs 
for the prediction of the solar PV power. Deep learning also 
can be considered. In addition, the prediction horizon such 
as the medium-term and the long-term will be considered.  
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