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Abstract— In this study, automatic modulation 

classification (AMC), a key part of both civilian and 

military applications, is looked at using a deep 

learning method .A lot of research has been done on 

feature-based (FB) AM algorithms in particular. 

In this paper, a robust AMC strategy based on 

convolutional neural networks (CNN) is proposed to 

solve the issue that current FB AMC methods 

frequently target a small set of modulations and lack 

generalisation capability. In total, 11 different 

modulation types are taken into consideration. 

Conventional AMCs can be categorised into 

maximum likelihood (ML)-based (ML-AMC) and 

feature-based AMCs. This paper proposes a robust 

convolutional neural network (CNN)-based 

automatic modulation classification (AMC) 

technique. The recommended method may 

automatically identify the characteristics of the 

incoming signals and classify them without the need 

for feature extraction. A comparison study was done 

for the proposed CNN-based AMCs with two 

different optimizers at two different signal-to-noise 

ratios to select the best one of them based on 

performance. 

Keywords: Modulation classification, Deep 

learning, Convolutional neural network Wireless 

signal. 

1. INTRODUCTION  

The civilian wireless communication system uses 

adaptive modulation techniques to achieve the best 

transmission rates while fully utilising time-varying 

channels.  
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In these situations, the transmitter and receiver must 

exchange information about a particular modulation 

scheme utilised in a communication process via a 

network protocol at the expense of protocol 

overhead. When the receiver is capable of 

recognising modulation schemes, this overhead could 

be reduced. However, many military applications 

demand the automatic identification of the 

modulation techniques used by adversarial 

communications. Interception of signals and jamming 

are examples of such applications. 

A crucial component of non-cooperative 

communication systems is automatic modulation 

classification (AMC), which determines the kind of 

modulation present in the received signal. Cognitive 

radio, adaptive communication, and electronic 

reconnaissance are just a few of the many civic and 

military applications that depend on the AMC. In 

these systems, the signal's modulation type can be 

arbitrarily chosen by the transmitters, but the 

receivers must be aware of the modulation type in 

order to successfully demodulate the signals. Without 

affecting spectrum efficiency, AMC is a good 

solution to handle this issue. 

       In the last 20 years, AMC algorithms have 

received a lot of research. Generally speaking, 

likelihood-based (LB) [1] and feature-based AMC 

algorithms fall into two groups (FB)[2]. While FB 

strategies rely on feature extraction and classifier 

building, LB approaches are founded on the 

probability function of the received signal. Although 

LB approaches can theoretically reach the ideal 

answer, they have a large computational complexity 

and demand previous knowledge from transmitters. 

While FB approaches do not rely on past knowledge 

and have a significantly lower computational 

complexity, they can nevertheless produce inferior 

answers. Over the past two decades, academics have 

focused more on FB approaches because the prior 

information needed by LB methods is frequently not 

available in practise. Feature extraction and 

classifying are the two crucial components of FB 

techniques. AMC algorithms have explored and 

utilised a variety of feature types. In the time domain, 

for instance, instantaneous amplitude, frequency, and 

phase were used to determine instantaneous 
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properties[3]. Fourier and wavelet transforms were 

used to calculate features based on transformations 

[4]. Statistically significant are high-order cumulant 

(HOC) [5] properties characteristics that are derived 

from various orders of cumulants [6] from the 

received signals. The mathematical elimination of 

additive white Gaussian noise (AWGN) in HOC 

features is possible. On the spectral correlation 

function (SCF) derived from the Fourier transform of 

the cyclic autocorrelation function, cyclostationary 

features are based [7]. In order to train the classifiers, 

the cyclic domain profile selects the greatest SCF 

values for various cyclic frequencies. Maximum 

Likelihood (ML)-based AMC techniques are also 

examined in [1], where it has been demonstrated that 

they achieve the best results when used with 

situations including mathematical channel models. 

As an end-to-end module, ML-AMCs analyse the 

probability functions of all potential modulations in 

contrast to feature-based AMCs and select the 

modulation scheme with the highest likelihood value. 

However, real-time low-cost implementation is 

highly challenging due to the high computational 

complexity[8]. Additionally, in complicated contexts, 

it is challenging to attain the precise likelihoods in 

ML-AMC. The machine learning techniques in 

feature-based AMCs merely serve as a mapping 

function between features and many hypotheses. The 

deep learning approach[9] has been rapidly evolving  

in recent years, both in algorithm design and 

hardware implementation [10], and it can learn 

noticeably more complex functions than a shallow 

one. This ends feature engineering. Deep learning's 

quick progress has produced some effective 

communications applications[11], such as modulation 

classification. The eye map of the raw signal is 

employed in [12] as the input for a Lenet-5-based 

classifier[13] and gently links the issue of AMC with 

the well researched field of image recognition. The 

extracted feature set is the main factor that affects 

how well FB techniques operate. In other cases, 

features may not be feasible, and they must be 

manually developed to satisfy the proper set of 

modulation requirements and channel conditions. 

Additionally, careful thought must be put into finding 

useful features. These characteristics have led to the 

adoption of deep learning (DL) techniques, which 

can automatically extract features. Due to its superior 

categorization capabilities, DL, a subfield of machine 

learning, has had exceptional success. Many 

domains, including image classification [14] and 

natural language processing[15] , have used DL. 

Many common DL networks have been used in 

AMC, including deep belief networks[16], stacked 

auto encoders[17], and convolutional neural networks 

(CNN) [18] have been applied in AMC. Most modern 

DL techniques frequently use DL networks as 

classifiers.  

In our research, we present a deep neural network 

(DNN) enabled AMC that can automatically learn to 

extract features from lengthy symbol-rate data at low 

SNR, and we use the convolution neural network 

(CNN) to achieve this AMC. While significantly 

increasing speed, the CNN-AMC can approximate 

the ML-AMC with little performance loss. Our 

suggested CNN-AMC compares to the ML-AMC, 

which can also produce training data under various 

conditions. These features enable a significant 

improvement in the generalisation capability of AMC 

under various SNR circumstances. The benefits and 

contributions of our suggested strategy are listed as 

follows in this paper: 

 The modulations that were looked at in this 

study are more complicated and include a 

total of 11 different types. Most current 

methods, on the other hand, can only find a 

small number of modulation types.  

 Even though the DL network at intermediate 

frequency (IF) handles incoming signals 

directly, most methods still require more 

processing or transformation before signals 

can be classified.  

 Most current methods only work at a certain 

SNR level, but this method can give very 

accurate classifications over a wide range of 

SNR levels.  
 While most DL approaches solely consider 

DL networks as potent classifiers, the CNN 

constructed in this paper also serves as a 

feature extractor. CNN's learned features are 

presented and examined. To further 

comprehend the feature learning process, the 

contributions of several convolutional 

kernels are also shown. 

      In this article, two CNN-based automatic 

modulation classifiers are introduced. Each CNN-

based AMC architecture employs one of three 

proposed classification layers (CL), namely: Sum of 

Squared Errors-based (SSE) CL, and crossentropy-

based CL. The performance of the proposed CNN-

based AMCs will be investigated using optimization 

algorithm, namely: Adaptive Moment Estimation 

(Adam). 
        The remaining portions of the essay are 

structured as follows: Section 2 provides an 

explanation of the fundamental model and the 

specifics of our suggested methodology, while 

Section 3 provides the simulation results and a 

commentary. Section 4 serves as the paper's final 

conclusion. 

 



Automatic Modulation Classification: Convolutional Deep Learning Neural Networks Approaches                                              50                                                                                                                                                                                 

  

2. SYSTEM MODEL 

Between the receiver's signal detection and 

demodulation is the AMC. In  

Fig 1 , the structure of our proposed AMC 

technique is contrasted with that of more 

conventional approaches.  
In  

Fig 1, preprocessing is quantization and sampling 

of IF signals. The CNN in this case takes the place of 

the feature extraction, feature selection, and classifier 

processes inside the dashed frame. Before being used, 

the CNN is offline pre-trained with the appropriate 

number of samples. Additionally, if the SNR range of 

the communication channel is known, the CNN can 

learn the characteristics that adjust to the appropriate 

circumstance. Because of this characteristic, our 

method is not dependent on SNR estimation. 

 

Fig 1: AMC method that is suggested and traditional methods are 

contrasted 

2.1 Signal model 

       In this study, signals are distorted by AWGN 

while being processed in IF. The received signal can 

then be represented as         

         𝐲(𝐭) = 𝐱(𝐭) + 𝐳(𝐭) (1) 
where 𝑥(𝑡) is the transmitted signal of different 

modulation types, 𝑧(𝑡) is AWGN, and SNR is 

defined as 𝑞𝑥 𝑞𝑧⁄  (𝑞𝑥 is the power of signal and 𝑞𝑧 is 

the power of noise). In this study, a set of 

modulations is examined that BPSK,QPSK,8-

PSK,16-QAM,64-QAM,PAM4,GFSK,CPFSK,B-

FM,DSB-AM,SSB-AM signals.𝑥(𝑡) is expressed as 
𝒙(𝒕) = 𝑨𝒎 ∑ 𝒂𝒏𝒏 𝒈(𝒕 − 𝒏𝑻𝒔) 𝐜𝐨𝐬[𝟐𝝅(𝒇𝒄 + 𝒇𝒎)𝒕 + 𝝋𝟎 + 𝝋𝒎] 

(2) 

where 𝐴𝑚, 𝑎𝑛, 𝑇𝑆, 𝑓𝑐, 𝑓𝑚, 𝜑0, and 𝜑𝑚 are, in that 

order, the modulation amplitude, symbol order, 

symbol period, carrier frequency at IF, modulation 

frequency, starting phase, and modulation phase and 

ℎ(𝑡) the gate function is shown as: 

𝐡(𝐭) = {
𝟏   𝐢𝐟𝟏 ≤ 𝐭 ≤ 𝐓𝐬

𝟎  𝐨𝐭𝐡𝐞𝐫
  (3) 

 

 

 

2.2 Convolutional neural network 

      CNNs are a regularised version of multilayer 

perceptrons that were motivated by the biological 

process of neuronal connection. They are efficiently 

used in a variety of classification problems because, 

in contrast to other classification methods, they 

require less preparation. A convolutional neural 

network condenses the input to the crucial elements 

that aid in identifying the input. Convolutional, 

pooling, and fully connected layers make up the three 

types of layers seen in typical CNN systems. In 

supervised learning, the last layer of the CNN uses an 

extra softmax regression layer as the classifier [19]. 
 Convolution Layer: The convolution layer 

performs the convolution between the filter 

and the input map. The underlying input is 

altered after the filter is applied in such a way 

that particular aspects of the input are 

highlighted. 

  Pooling Layer: The output of the convolution 

layer must be compressed for some 

applications. By down sampling the feature 

map, pooling allows for the summary of the 

features. This makes the features for position 

changes more robust. The  pooling  method 

and the maximum pooling method are the 

most popular pooling techniques. 

 Fully connected layer: Dense layers are used 

for the classification task, and each neuron in 

each layer is normally connected to every 

other neuron in the layer below with some 

weights and activations. 

  Output Layer: The final layer, known as the 

output layer, uses a certain activation function 

to ascertain the probability response. 

 

This image displays a typical CNN architecture. 

Fig 2 and Table 1 
 

 
Fig 2: Convolutional Neural Network 
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layer number layer type output 

dimension 

layer number layer type output 

dimension 

1 Input Layer (1×1024×1) 9 Max Pooling4 (1×64×48) 

2 CNN 1 (1×1024×16) 10 CNN 5 (1×64×64) 

3 MaxPooling1 (1×512×16) 11 Max Pooling5 (1×32×64) 

4 CNN 2 (1×512×24) 12 CNN 6 (1×32×96) 

5 Max Pooling2 (1×256×24) 13 Average 

Pooling 6 

(1×1×96) 

6 CNN3 (1×256×32) 14 Fully connected (1×1×11) 

7 Max Pooling3 (1×128×32) 15 Soft Max (1×1×11) 

8 CNN 4 (1×128×48) 16 Classification 

layer out put 

 

 

Table 1: CNN's Organization

3. Numerical results and discussion 
 

The dataset used in this study was initially created. 

The dataset contains 10,000 frames for each 

investigated modulation type. The dataset is split into 

three sections: The proposed DNN-based AMCs are 

trained with 80% of the frames, validated with 10%, 

and tested with the remaining 10%. During the DNN 

training phase, training and validation frames are 

employed. 

 Test frames are used to determine the final 

classification accuracy. Each frame has 1024 samples 

and runs at a rate of 200 kHz. Eight samples 

constitute a symbol in digital modulation types. Each 

decision is made by the network based on a single 

frame rather than numerous consecutive frames. 

Assume that the digital and analogue modulation 

types have a centre frequency of 900 MHz and 100 

MHz, respectively. The parameters of modulation are 

shown in Table 2 

 

Parameter Symbol Value 

Samples 

per symbol 

SPS 

 

8 

Samples 

per frame 
 

SPF 

 

1024 

Center frequencies  

f c 

 

[900e6 100e6] 

Sample rate 
 

 

f s 

200e3 

 

 
Table 2: Modulation Parameter 

In this section, a comparative study will be 

conducted for the three proposed CNN-based 

AMCs. The three classifiers have the same 

architecture except for the final classification 

layer. Each classification layer is based on a 

different loss function. The adopted CLs are novel 

sum of squared errors-based CLs and 

crossentropy-based CLs, which are the most 

commonly used. The loss function can be 

expressed as follows[20] 

𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑒𝑥 = − ∑ ∑ 𝑥𝑖𝑗(𝑘) log(𝑋𝑖�̂�(𝑘))

𝑐

𝑗=1

𝑁

𝑖=1

 

(4) 

 

 
 (5) 

SSE = ∑ ∑(Xij(k) − Xiĵ(k))2

c

j=1

N

i=1

 

 (5) 
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Where 𝑁 is the sample number,𝑐 is the class 

number,𝑋𝑖𝑗 is the 𝑖𝑡ℎ transmitted data sample for 

the𝑗𝑡ℎ  class and 𝑋𝑖�̂�is the CNN-based AMC 

response for sample 𝑖 for class 𝑗.For the purpose 

of identifying the most robust CNN-based AMC, 

The performance of the proposed CNN-based 

AMCs will be investigated in terms of the 

classification accuracy using the optimizer 

Adaptive Moment Estimation (Adam). This 

experiment will be conducted at SNRs of 0 dB 

and 20 dB. 

3.1  At SNR = 0dB 

      At SNR=0dB, the suggested CNN-based 

AMCs are used to directly classify signals   (

Fig 3) show the normalized classification accuracies of each modulated signal including16QAM, 64QAM, 8PSK, 

B-FM, BPSK, CPFSK, DSB-AM, GFSK, PAM4, QPSK, SSB-AM using  the 11 CNN-based AMCs at SNR=0dB. 

The y-axis represents the true class of the modulated signals, and the x-axis represents the predicted class gotten 

from the examined CNN-based AMCs. The diagonal values represent the true classification accuracies. 

Table 3 collects all classification accuracies for more comfort tracking. 

Fig 3: Confusion matrixes for CNN-based AMCs using Adam optimizer and at SNR=0dB (Crossentropyex –SSE based CL ) 

Optimizer ADAM 

Modulation Type 
16QAM 64QAM 8PSK B-FM BPSK CPFSK DSB-

AM 
GFSK PAM4 QPSK SSB-

AM 

Loss 

Function 

Crossentropyex 3.6 30.9 33.9 95.8 36.3 89.4 53.5 97.3 48.6 5.1 53.5 

SSE 0.7 18.5 32.8 93.6 20.2 89.2 43.1 97.4 52.3 7.3 60.4 

Table 3:  Classification accuracies for all investigated CNN-based AMCs using Optimizer (ADAM) and loss functions-based CLs 

(crossentropyex-SSE) at SNR =0dB 

 

For 16QAM modulation method, 64QAM modulation method, 8PSK modulation method ,BPSK modulation 

method and QPSK modulation method, CNN (ADAM,crossentropyex,SSE) failed to correctly classify modulated signal.For B-

FM modulation method, CNN (ADAM, Crossentropyex) achieves accuracy95.8% also CNN (Adam, SSE) provides a reasonable 

classification with 93.6% accuracy. For CPFSK modulation method, all examined classifiers provide a competitive 

classification performance of accuracies 89%.For DSB-AM modulation method ,PAM4 nodulation method and SSB-

AM modulation method all examined classifiers provide a competitive classification performance of accuracies in 

range 43% to 60.4%.  For GFSK modulation method, 

CNN (ADAM, crossentropyex, SSE) achieve the highest accuracy 97.5%classification. 

 

3.2 At SNR =20dB 

     At SNR=20dB, the suggested CNN-based AMCs are used to directly classify signals          (Fig 4: Confusion 

matrixes for CNN-based AMCs using Adam optimizer and at SNR=20dB  (Crossentropyex –SSE based CL ) 

) show the normalized classification accuracies of each modulated signal including16QAM, 64QAM, 8PSK, B-

FM, BPSK, CPFSK, DSB-AM, GFSK, PAM4, QPSK, SSB-AM using  the 11 CNN-based AMCs at SNR=20dB. The 



  53                                                                                                                                                                      Mohamed Essai et. al.  

 

y-axis represents the true class  

of the modulated signals, and the x-axis represents the predicted class gotten from the examined CNN-based AMCs. 

The diagonal values represent the true classification accuracies. 

 (

Table 4) collects all classification accuracies for 

more comfort tracking. 
 

Fig 4: Confusion matrixes for CNN-based AMCs using Adam optimizer and at SNR=20dB  (Crossentropyex –SSE based CL ) 

Optimizer ADAM 

Modulation Type 
16QAM 64QAM 8PSK B-FM BPSK CPFSK DSB-

AM 
GFSK PAM4 QPSK SSB-

AM 

Loss 

Function 

Crossentropyex 59.0 69.8 76.6 99.9 99.3 99.5 88.5 99.9 99.0 88.0 82.3 

SSE 67.0 76.8 83.7 98.7 98.7 98.6 80.8 99.9 97.9 81.5 85.8 

Table 4: Classification accuracies for all investigated CNN-based AMCs using 

 Optimizer (ADAM) and loss functions-based CLs (crossentropyex-SSE) at SNR =20dB 

For 16QAMmodulation method, 

CNN(ADAM,Crossentropyex)achieves accuracy of 59% 

and CNN(ADAM,SSE) achieves accuracy of 67%. For 

64QAM modulation method, CNN (ADAM, 

Crossentropyex) achieves accuracy of 69.8% and 

CNN(ADAM,SSE) achieves accuracy of76.8%  . For 

8PSK modulation method, CNN (Adam, crossentropyex) 

achieves accuracy of 76.6%. For B-FM modulation 

method ,BPSK modulation method ,CPFSK 

modulation method ,GFSK modulation method and 

PAM4 modulation method all examined classifiers 

provide a competitive classification performance of 

accuracies in range 98.6% to 99.9%. 

For DSB-AM modulation method, QPSK 

modulation method and SSB-AM modulation 

method all examined classifiers provide a 

competitive classification performance of 

accuracies in range 80% to 80.5% 

. 

4. CONCLUSION 

        In this paper, deep learning CNN-based 

AMCs have been proposed and new loss functions-

based classification layers have been adopted to be 

used as the last layer. Finally, the developed 

classifiers' performance has been studied using 

optimizers: Adam. In total, 11 different modulation 

types have been used to train and test the proposed 

classifiers at SNR = 0, and 20 dB.The numerical 

results show that the true classification accuracy 

increases as the SNR increases. Also, the proposed 

AMCs achieve true classification accuracy that 

reaches 99.9% depending on the optimizer and loss 

function-base CL.The highest true classification 

accuracies (in range of 90%-99.9%) at SNR=10dB 

have achieved by CNN(ADAM Crossentropyex, 

SSE). The presented study demonstrates the 

importance of studying the effect of using optimizer 

(ADAM) and loss functions (crossentropyex-SSE) 

on the performance of CNN-based AMCs.  

For future studies, the performance of proposed 

AMC can be investigated using other optimization 

algorithms such as Adaptive Gradient (AdaGrad), 

Stochastic Gradient Descent momentum and 
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nesterov (SGDm+n), Adaptive Delta (Adadelta), 

and Nesterov-accelerated Adaptive Moment 

Estimation (Nadam), and loss functions-based 

classification layers. 

ABBREVIATIONS 

AMC: Automatic modulation classification 

SNR: Signal to noise ratio. 

FB: Feature Based 

LB: Likelihood Based 

IF: Intermediate frequency 

AWGN: Additive white Gaussian noise 

CNN: Convolutional neural network 

DL: Deep learning 

RELU: Rectified linear unit 
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