
SVU-International Journal of Engineering Sciences and Applications (2023) 4(1): 79-84

Print ISSN 2785-9967 | Online ISSN 2735-4571

DOI 10.21608/svusrc.2022.161634.1072

Gamma Effect in Face Detection Methods

Mahmoud Hardan1, , Mohamed Abdel-Nasser2, Adel B. Abdel-Rahman1,3

Abstract Face detection could be a technology capable

of finding a person's face in an image or video frame. Face

detection is one of the foremost widely used computer

vision applications. it's a fundamental problem in

computer vision and pattern recognition. Face detection

could be a critical beginning in face recognition systems,

with the reason for localizing and extracting the face

location from the background. Within the last decade,

multiple face feature detection methods have been

introduced. In python, there are plenty of face detection

methods like OpenCV library, dlib library, MTCNN

algorithm, and ….etc. During this paper, we present a test

compression between the face detection methods. There

are many face detection methods. We decide on the

foremost used like OpenCV with Haar cascade and LBP

models, MTCNN algorithm and dlib with CNN model and

HOG model in python and therefore the effect of gamma

value on its accuracy. The chosen face detection methods

measured the period of time for each gamma value.

Keywords:. Face Detection, Facial Recognition, Python,

Gamma, MTCNN, Haar cascade, dlib, HOG.

1 Introduction

Received: 8 September 2022/ Accepted: 23 December 2022

Corresponding Author

1. Electrical Department, Faculty of Engineering, South Valley

University, Qana, Egypt

engmahfah2005@gmail.com

2. Faculty of Engineering, Aswan University

Aswan , Egypt, mohamed.abdelnasser@aswu.edu.eg

3. School of Electronics, Communications and Computer

Engineering ,E-JUST, Egypt, adel.bedair@ejust.edu.eg

Face detection [1] is one in every of the foremost widely

used computer vision applications. It’s a fundamental

problem in computer vision and pattern recognition. Face

detection may be a technology employed in a spread of

applications to acknowledge faces in digital images. Face

detection will be considered a special case of target

detection. In object detection, the task is to search out the

position and size of all objects of a given class within the

image. Face detection is the first stage of face recognition.

Fig. 1 shows the relation between face detection and face

recognition.

Fig. 1 the relation between the face detection and face

recognition

In the last decade, multiple face feature detection methods

80 Mahmoud Hardan et al.

Fig. 2 the effect of gamma on the image. Gamma=0

are introduced. In python, there are lots of methods for

face detection like as OpenCV library [2, 3], dlib library

[4, 5], MTCNN algorithm [6, 7], and …. etc. Face

detection may be a critical opening in face recognition

systems, withthe reason for localizing and extracting the

face location from the background. It additionally has

quite few functions in areas like content-based photo

retrieval, video coding, video conferencing, crowd

surveillance, and clever human–computer interfaces.

The goal that we seek during this paper is to get the

effect of adjusting the gamma factor with different

libraries and different models like OpenCV with Haar

cascade, OpenCV with LBP, dlib with HOG, and dlib

with CNN and also the average time it takes for every

model to detect faces, find the simplest model will be

used and best value of gamma is work on that.

1.1. Gamma Factor

Gamma—gamma-correction—simply refers to the

operation to encode the linear values the camera records

into a non-linear relationship (or the reversal of this

process in decoding). the explanation we must gamma

correct images lies within the historical must

accommodate the exponential output response of the old

ray Tube (CRT) displays. The luminance would arc up

from black to white because the input voltage increased

[8]. Fig. 2 show the effect of gamma on the image.

1.2. OpenCV Library

OpenCV is that the huge open-source library for the pc

vision, machine learning, and image processing and now

it plays a significant role in real-time processing which

is extremely important in today’s systems. By using it,

one can process images and videos to spot objects, faces,

or maybe handwriting of a people. When it integrated

with various libraries, like NumPy, python can process

the OpenCV array structure for analysis. to spot image

pattern and its various features we use vector space and

perform mathematical operations on these features.

1.2.1. Haar Cascade classifiers

Haar Cascade classifiers are a good way for object

detection. Haar Cascade could be a machine

learning-based approach where lots of positive and

negative images are wont to train the classifier. Positive

images – These images contain the pictures which we

would like our classifier to spot. Negative Images –

Images of everything else, which don't contain the

article we would like to detect [9]. Fig.3 show how the

Haar Cascade classifiers work.

Fig 3 Haar Cascade classifiers work [9]

1.2.2. Local Binary Pattern (LBP)

Local Binary Pattern (LBP) may be a simple yet very

efficient texture operator which labels the pixels of a

picture by thresholding the neighborhood of every pixel

and considers the result as a binary number, Fig. 4. LBP

may be a visual descriptor it may be used for face

recognition tasks[10]. Parameters: the LBPH uses 4

parameters:

Fig. 4 Local Binary Pattern (LBP) method [4]

• Radius: the radius is employed to make the circular

local binary pattern and represents the radius round the

central pixel. It’s usually set to 1.

0.00 1.5 0.50 2.5 3.0

Gamma Effect in Face Detection Methods 81

• Neighbors: the amount of sample points to make the

circular local binary pattern. Detain mind: the more

sample points you include, the upper the computational

cost. It’s usually set to eight.

• Grid X: the quantity of cells within the horizontal

direction. The more cells, the finer the grid, the upper

the dimensionality of the resulting feature vector. It’s

usually set to eight.

 • Grid Y: the quantity of cells within the vertical

direction. The more cells, the finer the grid, the upper

the dimensionality of the resulting feature vector. It’s

usually set to eight.

1.3. Dlib Library

Dlib could be a modern C++ toolkit containing machine

learning algorithms and tools for creating complex

software in C++ to resolve world problems. it's utilized

in both industry and academia in a very big selection of

domains including robotics, embedded devices, mobile

phones, and huge high performance computing

environments. Dlib's open-source licensing allows you

to use it in any application, freed from charge [11].

1.3.1. Histogram of oriented gradients (HOG)

Histogram of Oriented Gradients, also called HOG, may

be a feature descriptor just like the Canny Edge Detector;

SIFT (Scale Invariant and have Transform). it's utilized

in computer vision and image processing for the aim of

object detection. The technique counts occurrences of

gradient orientation within the localized portion of a

picture[12]. Figure [5,6] show the Using of HOG.

Fig. 5 Input image to HOG

Fig. 6 Left : Absolute value of x-gradient. Center : Absolute

value of y-gradient. Right : Magnitude of gradient [12]

1.3.2. Convolutional neural network model (CNN):

CNN (Convolutional Neural Network), Fig.7 could be a

class of deep networking, it works rather well for

non-frontal faces at odd angles where HOG based

detector isn't good at it. Dlib with CNN based face

detection, trained with innumerable images, and stored

the trained model in an exceedingly

“mmod_human_face_detector.dat” file. Dlib with CNN

can to detect another object with another '.dat' file [13].

Fig. 7 CNN for face detection [13]

1.4. MTCNN Algorithm

Multi-Task Cascaded Convolutional Neural Networks [6]

could be a neural network that detects faces and facial

landmarks on images. MTCNN is one in all the foremost

popular and most accurate face detection tools today.

The MTCNN work by resizing the image, scale the first

image to different scales, and generate a picture pyramid.

Then the pictures of various scales are sent to 3

sub-networks for training Fig .8, the aim is to detect

faces of various sizes, to attain multi-scale target

detection. The three sub-networks are: -

1.4.1. P-Net (Proposal Network): -

 P-Net may be a candidate network for the face region.

The input of the network may be a 12x12x3 image. After

3 layers of convolution, it's judged whether there's a face

82 Mahmoud Hardan et al.

within the 12x12 image, and also the regression of the

face frame and also the person are given. Key points of

the face.[6].

1.4.2. R-Net (Refine Network): -

 As is seen from the network diagram, it's only due to

the difference between the network structure and also

the P-Net network structure that a totally connected

layer is added, so it'll achieve a more robust suppression

of false-positive effects. Before inputting R-Net, it has to

be scaled to 24x24x3. The output of the network is that

the same as that of P-Net. the aim of R-Net is to get rid

of an oversized number of non-face frames [6].

1.4.3. O-Net (Output Network): -

As are often seen from the network diagram, this layer

has yet one more convolutional layer than the R-Net

layer, therefore the processing result are more refined.

The input image size is 48x48x3, and therefore the

output includes the coordinate information of the N

bounding boxes, the score and also the position of the

key points [6].

 Fig. 8 MTCNN Design [6]

In this study, in the domain of face detection, we

compare the face detection methods in python. The rest

of the paper organizes as follows: In section 2, we

present the methodology used to test the face detection

methods under test. In section 3, we discuss the results

and discuss our experiments. Finally, section 4

concludes the paper.

2. Methodology

This section describes the methodology which we used

to compare the face detection methods (OpenCV with

Haar cascade, OpenCV with LBP, dlib with HOG, and

dlib with CNN). Table (1) describes the computer

specifications used in this experiment.

Table 1 Computer Specification

Processor Intel(R) Core (TM) i5-2430M CPU @ 2.40GHz

2.40 GHz

RAM 12.0 GB

GPU GF119-CORES 48-TMUS 8-ROPS

4-MEMORY SIZE 1024 MB-MEMORY TYPE

DDR3-BUS WIDTH 64 bit

The following table (2) shows the steps of the algorithm

that was used in this paper:

Table 2 Step of Algorithm

step

1 Set gamma=0
2 Set timer=0
3 Adjust the image using gamma value
4 Using one of test face detection model

to detect faces

5 Stop timer
6 gamma=gamma+0.1
7 Repeat steps 2-6 while gamma<=3

3 Results

In this section, we will describe the results that were

extracted from the models that were used. Our process

relied on inserting an image consisting of 5 faces that

were repeated twice (5*2) and examining the results and

the time used to discover the faces. Figure (2) shows the

image used as input. Fig. (9) show the accuracy resulting

from all models concerning gamma.

Fig. 9 The Accuracy of Face Detection Models

Gamma Effect in Face Detection Methods 83

Fig.10, which shows the efficiency of each model with

changing gamma, shows us with small values of gamma

from 0.0 to 0.1; the detection rate is the lowest possible

value. Whereas higher gamma values from 1.0 to 3.0

indicate higher efficiency. But the best model with lower

gamma values is the Haar cascade, where its efficiency

reaches 60% when the gamma value is 0.2 and then rises

to a value ranging from 80% to 90%.

The best model with high gamma values was dlib with

CNN model where its value ranged from 90% starting

from gamma equal to 0.3 until gamma equal to 0.6 and

the value settled at 100% starting from gamma 0.7 to

gamma of 3.0

Fig. 10 Elapsed Time of Face Detection Models

Finally, Figure (11) shows the time used for each

model to detect faces concerning gamma. As it is clear

from the figure that the average time elapsed for each of

the Haar cascade, LBP, and finally dlib with HOG is

1.521853281,1.119600397,1.051145784 seconds in

order and the lowest value that is always considered a

gamma value less than 0.2 and this is shown in Table (3)

where it does not exceed a second One for these models,

and in cases of high gamma, it is only less than two

seconds.

Whereas dlib with CNN, which is the most efficient,

takes a time ranging from 129 seconds for the lowest

gamma value and 136 seconds for the highest gamma

value.

As for MTCNN, which is one of the most common

nowadays in face detection, the time used by it to detect

faces is no more than 7 seconds and not less than 3.5

seconds. But it was noticed that the time in MTCNN is

inverted, the higher the gamma, the lower the time

needed to detect faces

Table 3 Avarage Elapsed Time of Face Detection Models

(second)

 Average Min Max
MTCNN 4.290299 3.982811 6.780323

HAAR 1.521853 0.419168 1.805049

LBP 1.1196 0.538264 1.481038

DLIB_HOG 1.051146 0.974717 1.481223

DLIB_CNN 131.0512 129.3556 136.8949

Another point that emerged from the relationship

between the time it takes for the model to find faces and

change gamma values is that MTCNN takes longer time

in low gamma values less than 0.5 than it takes in

gamma values higher than 0.5. As for OpenCV with LBP,

the highest time taken was from A gamma value of 1.0

to a gamma value of 1.5 as well as OpenCV with Haar

cascade the highest time spent was starting from a

gamma value of 1.0 to a gamma value of 1.2. In the

opposite direction, dlib wth HOG starts from a value of

2.5 to 3.0 and dlib with CNN starts from a value of 2.2

to a value of 3.0.

4 Conclusion

As a clear result, changing the gamma value affects the

performance of the different models. The fastest model

is OpenCV with LBP and the slowest is dlib with CNN

with an average time of 1.1196,131.0512 sec in the same

order. Changing the gamma value affects the efficiency

of the different models and affects the time that each

model needs to detect faces. It leads to an increase in the

efficiency of the models with an increase in the gamma

value and vice versa. And dlib with CNN is the best

because with values less than one gamma, its efficiency

rose to 100%, followed by dlib with HOG. But the best

in time and efficiency is dlib with HOG, its efficiency is

not less than 80% with values starting from 0.5 gamma

value and the elapsed time does not exceed 1.5 seconds

References

[1] E. Hjelmås and B. K. Low, "Face detection: A survey,"

Computer vision and image understanding, vol. 83, no. 3, pp.

236-274, 2001.

[2] R. Laganière, OpenCV 3 Computer Vision Application

Programming Cookbook. Packt Publishing Ltd, 2017.

84 Mahmoud Hardan et al.

[3] D. S. Vasantha, "FACE MASK DETECTION SYSTEM

USING DEEP LEARNING."

[4] "http://dlib.net/python/." (accessed.

[5] N. LATTRAG and A. BAGHDADI, "Face Recognition

Based Access Control Systems," UNIVERSITY of M'SILA,

2022.

[6] N. Zhang, J. Luo, and W. Gao, "Research on face detection

technology based on MTCNN," in 2020 international

conference on computer network, electronic and automation

(ICCNEA), 2020: IEEE, pp. 154-158.

[7] P. Kavitha, D. Shanmugam, T. Akash, T. KaranRaj, and A. G.

Gowtham, "PAYMENT TRANSACTION USING

FACE-RECOGNITION," 2022.

[8] "Understanding Gamma in Photography."

https://www.japanistry.com/understanding-gamma-in-photog

raphy/ (accessed.

[9] P. Viola and M. Jones, "Rapid object detection using a

boosted cascade of simple features," in Proceedings of the

2001 IEEE computer society conference on computer vision

and pattern recognition. CVPR 2001, 2001, vol. 1: Ieee, pp.

I-I.

[10] T. Ahonen, A. Hadid, and M. Pietikäinen, "Face recognition

with local binary patterns," in European conference on

computer vision, 2004: Springer, pp. 469-481.

[11] "DLib C++ libraty." http://dlib.net/ (accessed.

[12] O. Déniz, G. Bueno, J. Salido, and F. De la Torre, "Face

recognition using histograms of oriented gradients," Pattern

recognition letters, vol. 32, no. 12, pp. 1598-1603, 2011.

[13] K. Grm, V. Štruc, A. Artiges, M. Caron, and H. K. Ekenel,

"Strengths and weaknesses of deep learning models for face

recognition against image degradations," Iet Biometrics, vol.

7, no. 1, pp. 81-89, 2018.

