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Abstract Comprehending and predicting the fluctuations in the 

energy storage functionality of ferroelectric-based apparatuses 

throughout a broad range of temperatures is crucial. To achieve 

this, we developed and simulated a Function Fitting ANN model 

using MATLAB. The model was trained using the 

back-propagation algorithm, effectively capturing the 

relationship between the applied electric field, and resulting 

polarization through experimental data. The model demonstrates 

excellent performance with two hidden layers consisting of 37 

neurons in each and three input layers.  Extensive 

experimentation confirms the model's impressive accuracy in 

predicting energy storage performance, particularly at different 

temperature conditions around Curie temperature Tc. The 

experimental part of the study was done in the temperature range 

(43-95 ᵒC) which seems to be limited. However, it justifies 

temperature-induced changes around the Curie temperature (TC). 

Above curie temperature (T > TC), the material becomes 

paraelectric and loses its spontaneous polarization resulting in 

more decrease in recoverable energy-storage density and 

efficiency. The remarkable predictive performance of the model 

is attributed to its remarkably low mean square error of 3.68×10-5.  

This result emphasizes the model's precision and reliability in 

accurately forecasting energy storage parameters. Finally, BCZT 

ceramic samples were selected for the present work for being a 

very famous ferroelectric material and has well-known 

ferroelectric properties.   
 

Keywords: Artificial Neural Networks; Energy Storage 

Parameters; Ceramic Capacitors; Temperature Variation; 

Ferroelectric Hysteresis Loops. 

 

 1 Introduction  

Energy storage materials play a vital role in various 

applications, including capacitors, sensors, and energy 

harvesting devices. The main importance of energy  
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storage in capacitance lies in its ability to store and 

release electrical energy quickly. Capacitors are 

commonly used in power electronics and electrical 

systems to provide short bursts of energy. They can deliver 

high power quickly, making them crucial for applications 

needing high-speed energy storage and release [1].  

BCZT is an exceptional piezoelectric ceramic composed 

of a perovskite structure commonly known as ABO3 [2]. 

Due to its remarkable properties, including a high Curie 

temperature and strong ferroelectricity, BCZT has 

garnered significant interest as a suitable material for a 

range of technological advancements. However, its 

behavior at different temperature conditions, particularly 

the temperature-induced variations on the (P-E) hysteresis 

loop, is studied [3-5]. 

 Temperature variations, however, impose significant 

challenges on the energy storage behavior of BCZT. The 

PE hysteresis loop, representing the relationship between 

polarization and electric field, undergoes dynamic changes 

due to thermal effects. Understanding and predicting these 

variations is essential to ensure the reliable operation of 

BCZT-based devices across a wide temperature range. It 

can also explain how the material's properties change at 

the effect of temperature. This is crucial for optimizing 

their design and efficiency. Using ANNs presents an 

advantageous solution for researchers grappling with the 

unwanted electrical spark in their samples. This challenge 

can significantly face the progress and effectiveness of 

scientific progress. 

The literature survey revealed the difficulty of 

comparison with other models. This is due to: 

-Traditional modeling approaches often struggle to capture 

the nonlinear and complex nature of the P-E hysteresis 

loop [7,8]. An example of modeling and simulation of a 

hysteresis loop under the influence of temperature 

variation can be seen in references [9-11]. 

- Other studies might use different architectures or 

additional techniques to ensure better generalization 

across various results. 
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- The proposed model demonstrates superior performance 

especially in the test area compared to previously reported 

ANN-based approaches [6]. Additionally, traditional 

modeling methods include the ferromagnetic Jiles 

Atherton and the Neuroevolutionary or mathematical 

models in Refs. [7,8,11] have shown shortcomings in 

capturing the complete curve. In contrast, the proposed 

model exhibits a key advantage: its ability to predict a 

complete hysteresis loop even at non-standard 

temperatures, a capability absents in prior methods. 

It must be noted that this research applies a novel 

approach by using Artificial Neural Networks (ANNs) to 

predict energy storage characteristics.  

Machine learning is generally used in the prediction of 

descriptors for ferroelectricity [12,13]. However, Future 

research could explore the development of comprehensive 

ANN models that can simultaneously predict and simulate 

ferroelectric hysteresis loops [14].  

This study showcases the strength of (ANNs) by 

demonstrating their ability to learn the data behavior and 

establish accurate correlations. ANNs have the potential to 

surpass the limitations of traditional models, allowing for 

enhanced predictions of energy storage performance 

across diverse temperatures.  

The framework presented in this research involves 

training ANNs on a comprehensive dataset, which 

includes (P-E) hysteresis loops of BCZT at various 

temperatures and constant electric fields. By providing 

input variables like temperature, electric field strength, 

and time to these ANNs, we can obtain precise predictions 

of hysteresis loops, which can subsequently be used to 

measure energy storage parameters. 

2 Methodology 

2.1 BCZT powder synthesis 

BCZT ceramic samples were successfully produced in 

ambient air via the solid reaction method. The process 

involved weighing and mixing BaCO3(99.999.9999 Sigma 

Aldrich), CaCO3 (99.99% Sigma Aldrich), ZrO2 (99.99% 

Sigma Aldrich), and TiO2 (99.999% Sigma Aldrich), 

according to the desired composition formula. After 

milling and mixing in ethanol for 24 hours, the mixture 

was dried at 80°C for 4 hours and then sieved. Thermal 

calcination was conducted in an electric digitalized 

furnace (type KSL-1700x) at 1300°C for 2 hours in an air 

atmosphere to avoid contamination. The calcined powder 

was mixed with 5 wt% polyvinyl alcohol (PVA) binder, 

pressed into pellets, and sintered at 1550°C for 4 hours. 

2.2 Description of dataset  

 In this work, the dynamic ferroelectric hysteresis data 

(mono P-E loops) was measured from single-crystal BCZT. 

The used BCZT single crystal was of tetragonal {001} 

phase. Rigorous characterization techniques, including 

XRD and SEM, were reported in a previous paper [15], 

The hysteresis loops were measured with a frequency of 

50 Hz and field amplitude of 25 kV/cm, where the BCZT 

disc-shaped plates with an area of 0.54 cm2 and thickness 

of 850 µm. A constant electric field (25 kV/cm) was used 

in the BCZT study for many reasons: a) To explore the 

effect of hysteresis loops against temperature variation and 

hence energy storage behavior. b) The model's accuracy 

depends on the quality and quantity of the experimental 

data used for training. The 25 kV/cm is used to obtain 

(from the experimental work experience) a large amount 

of data points which is required for energy storage work. 

This value is convenient to avoid the electrical breakdown 

in the BCZT sample. The ferroelectric properties and 

Rayleigh analysis of the BCZT ceramics sample were 

measured using (Precision 10 kV HVI-SC Radiant 

Ferroelectric Technologies Inc.).  

2.3 Artificial neural network for energy storage 

parameters prediction 

 The energy storage prediction model utilizes a Function 

Fitting Neural Network in the MATLAB program, offering 

flexibility to capture intricate, non-linear relationships 

within the data. To study temperature-induced variations 

in hysteresis loops, multiple curves were employed for 

training, presenting a challenge due to repetitive electrical 

field values. This complexity was mitigated by designing 

the input layer with time, instantaneous electrical field, 

and temperature variables. The dataset was split into 

training, validation, and testing sets (in a ratio of 

0.8:0.1:0.1), and an ANN architecture with one input layer 

and two hidden layers, each containing 37 neurons, was 

implemented. Fig. 1 represents the Artificial neural 

network model. Backpropagation and sigmoid activation 

functions facilitated training, while the Bayesian 

regularization algorithm optimized weights and biases, 

refining predictions iteratively. By minimizing mean 

square error, the network continuously improved accuracy. 

Calculation of energy storage coefficients relies on 

mathematical operations applied to hysteresis loops from 

ferroelectric analysis. Table 1 provides a summary of the 
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characteristic training values. 

Table 1 Training characteristics of ANN 

ANN Characteristics Value/ Description 

Neural network function Function-fitting neural network 

Number of input layers 3 

Number of output layers 1 

Number of hidden layers 2 

Number of neurons in each hidden 

layer 

27 

Number of weight elements 892 

Input Weights {3×1 cell array of 1 weight} 

Layer Weights {3×3 cell array of 2 weight} 

Division function dividing division function 

Hidden layers activation function Hyperbolic sigmoid function 

(logsig) 

Output layer activation function Linear transfer function 

(purelin) 

Training algorithm Bayesian regularization 

backpropagation (trainbr) 

Error performance function Mean squared error 

Learning rate parameter 5 

.

.

.

Time

Temperature

Instantaneous 

electrical field

Input layer
Hidden layers

Output layer

Polarization

.

.

.

Fig. 1 Artificial neural network model 

2.4 Measurement of predicted energy storage parameters 

 The performance of energy storage, determined from 

the unipolar (P–E) hysteresis loop, is assessed using the 

following key parameters: 

Recoverable Energy Storage Density (Wrec): This 

parameter measures the energy that can be retrieved per 

unit volume and is generally calculated as in Eq.  

(1):                                                           

                   (1) 

Here, the integration extends from the remanent 

polarization (Pr) to the maximum polarization (Pmax) 

along the lower segment of the loop.Energy Storage 

Efficiency (η): This represents the proportion of released 

electrical energy to the stored electrical energy, indicating 

the efficiency of the charge/discharge process. It can be 

calculated using Eq. (2):                

ɳ=Wrec/Wtotal                      (2) 

denotes the energy storage density during the charging 

process only. 

Effective Capacitance (Cmax): This is determined at the 

maximum unipolar measurement voltage and can be 

derived from Pmax using Eq. (3). Effective capacitance (nF) 

at the maximum mono measurement voltage is derived 

from Pmax by:            

        Cmax=(Pmax×1000×Area)/(max.Volts)       (3) 

3 Results and Analysis 

3.1 Ferroelectric analysis 

 The effect of the variation of the electric field against 

the polarization of BCZT at random temperature (43-95ᵒC) 

is depicted in Fig. 2. The figure shows the hysteresis mono 

loops behavior as a function of the polarization-dependent 

electric field at constant electric field strength 25 kV/cm 

and random temperature of BCZT sample. The 

well-saturated loops are strongly temperature dependent. 

As observed, a slim hysteresis loop has been detected at 

lower applied fields attributed to polar nano-regions 

contribution and nano-domains. while the ferroelectric 

hysteresis curve becomes broader, indicating a greater 

energy loss during the polarization-switching process 

[13,16]. The values of remnant polarization and maximum 

polarization at 25 kV/cm and different temperatures are 

shown in Fig. 2, Both the remnant polarization and the 

maximum polarization are nearly constant until reaching 

75ᵒC then they increase gradually with the increase of 

temperature. 
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Fig. 2 Mono (P-E) hysteresis loops for BCZT sample at 25 

kV/cm and different temperatures. Inside the figure, the 

maximum, and remnant polarization of BCZT relative to 
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temperature 

3.2 Energy storage parameters of experimental data 

Temperature dependence of recoverable energy-storage 

density, efficiency, and maximum effective capacitance of 

BCZT at electric field strength 25kV/cm are shown in 

fig.3. In fig.3(a, b) below Curie Temperature (TC < 91.7) 

BCZT ferroelectric exhibit a spontaneous polarization due 

to the alignment of dipoles. This results in a slight increase 

in recoverable energy-storage density and efficiency (same 

behavior). Approaching and around Curie temperature (T 

≈ TC), as the temperature approaches the Curie 

temperature, the ferroelectric material undergoes a phase 

transition from a ferroelectric phase Tara electric phase 

reducing the spontaneous polarization and leading to a 

decrease in recoverable energy-storage density and 

efficiency. This reduction is a consequence of the 

decreasing order in the material as it transitions to a state 

with less inherent polarization. Above curie temperature 

(T > TC), the material becomes paraelectric and loses its 

spontaneous polarization resulting in more decrease in 

recoverable energy-storage density and efficiency. In Fig. 

3c below curie temperature (T < TC) due to increasing 

polarization and alignment of dipoles a slight decrease in 

the dielectric constant and effective capacitance. As the 

temperature approaches TC and beyond it, the spontaneous 

polarization increases, leading to a slight increase in the 

dielectric constant and effective capacitance. 
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Fig. 3 (a) Temperature dependence of recoverable energy-storage 

density. (b) The efficiency of BCZT at 25kV/cm versus 

temperature (c) Maximum effective capacitance versus 

temperature 

3.3 Training performance of ANN using a ferroelectric 

data set 

The relationship between predicted values (outputs) and 

actual values (targets) generated by a trained Artificial 

Neural Network (ANN) across training, validation, and 

testing datasets, along with a combined regression plot is 

shown in Fig. 4. The dashed line represents the theoretical 

ideal scenario where the calculated outputs perfectly align 

with the targets (Y=T), forming a 45-degree angle. 

Outlying data points are discernible via the scatter plot. 

Moreover, a solid line denotes the linear regression line 

that optimally fits the relationship between outputs and 

targets. 

Fig. 4 The regression plot of ANN 

The R-value, serving as the correlation coefficient, 

quantifies the strength and direction of the linear 

association between calculated output values and 

corresponding target values. A maximum R-value of 1 

denotes a flawless correlation between output and target 

values. Remarkably, an R-value of 1 was observed across 

the training, validation, and testing regression sets. 

Consistent with the recommended acceptance criterion 

within the MATLAB neural network toolbox, an R-value 

of 0.9 is deemed satisfactory. Such a level of fit indicates 

proficient training, validation, and testing, signifying 

robust generalization without overfitting. Ideally, all 

scatterplot dots would precisely align along the diagonal 

line, indicative of a near-perfect alignment between 

predicted and actual values. The mean square error (MSE) 

is a commonly used metric in neural networks to assess 

the accuracy of predictions. It can be measured by eq: 

MSE =(1/n)×∑(Y-T)2                    (4) 
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Where n is the number of samples in the dataset. In the 

present ANN, it has a small value equal to 3.68×10-5. MSE 

value indicates better performance, as it means that the 

model's predictions are closer to the actual values. 

Fig. (5,6) shows the performance graph and the 

training state of the developed fitting network. It is seen in 

the graph that the lines drawn with the data obtained from 

the training, validation, and test stages of ANN intersect 

with the best value shown with dotted lines in the 2000th 

epoch. The termination of the training phase of the ANN 

by reaching the lowest MSE value indicates that the 

training of the model is ideally completed. It is important 

to analyze the error histogram graphs in making the 

performance analysis of ANNs. In the error histogram 

graphs, the error rates between the output values obtained 

from ANN and the target values are shown on the graph. 

Examining the error histogram graph in Fig.7. 

Fig. 5 Performance of the ANN model for training, validation, 

and testing data 

Fig. 6 Performance of selected ANN model in terms of gradient, 

mu, ssx, gamk, and validation fail parameter 

Fig.7 The error histogram for ANN 
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3.4 Comparison of predicted and actual data 

 The comparison between the predicted and experimental 

relationship between electric field and polarization at 

constant electric field strength 25 (kV/cm) and different 

temperature ranges (43-95 ᵒC) is illustrated in Fig. 8. 

Temperature range seems to be limited; however, it justifies 

temperature-induced changes around the Curie temperature 

(Tc). Above curie temperature (T > TC), the material 

becomes paraelectric and loses its spontaneous polarization 

resulting in a decrease in recoverable energy-storage density 

and efficiency. As for Fig. 8, the presented comparative 

analysis reveals a congruent and flawless alignment in the 

P-E hysteresis loops between the experimental and predicted 

datasets. This concordance not only imparts valuable 

insights but also substantiates the precision of the ANN 

employed. It attests to a profound comprehension of the 

material's characteristics. The perfection in matching 

signifies that the ANN model utilized for predicting the 

hysteresis loop encapsulates all pertinent parameters and 

their interrelations.  
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Fig. 8 Comparison between experimental and prediction mono 

(P-E) loops of BCZT at 25 (kV/cm) electric field and random 

temperature (43-95 ᵒC) 

Fig. 9 represents a comparison between experimental 

values and predictive values for energy storage parameters 

including recoverable energy storage density (a), 

efficiency (b), and maximum effective capacitance(c) 

under temperature variations. The figure indicates the 

model's reliability in predicting performance changes due 

to temperature variations. However, some correspondence 

in the overall behavior of the material, and this apparent 

discrepancy in the position of the points may be a result of 

differences in precision between the calculation accuracy 

of the software that generates its calculations. 
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Fig. 9 Comparison between experimental and prediction data of 

(a) Recoverable energy storage (b) Efficiency (c) Maximum 

effective capacitance of BCZT versus temperature range (43-95 

ᵒC) 

3.5 Prediction of (P-E) hysteresis loop under temperature 

variation 

The predictive methodology for (P-E) hysteresis loops in 

this study relies on forecasting these loops within a 

temperature range encompassing and beyond the 

experimental temperature. This approach ensures the 

network's ability to discern variations in shape both 

preceding and succeeding the Curie temperature. fig.10(a, 

b) shows the predicted mono (P-E) loops of BCZT at 25 

(kV/cm) electric field and random temperature before and 

after Tc. Due to the effective training of the ANN, it has 

demonstrated proficiency in distinguishing changes in 

curves with response to temperature variations. This 

appears in Fig. 10a where the curves exhibit a slender 

configuration, contrasting with their broader configuration 

in Fig. 10b.  

 

Fig.10 (a) Predicted mono (P-E) loops of BCZT at 25 (kV/cm) 

electric field and random temperature before Tc. (b) Prediction of 
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mono (P-E) loops of BCZT at 25 (kV/cm) electric field and 

random temperature after Tc 

3.6 Behavior of Predicted Energy Storage Parameters 

Utilizing eqs. (2, 3, 4), energy storage parameters for the 

predicted monodomain (P-E) loops of (BCZT) are 

computed, and these parameters are graphically 

represented versus temperature in Fig. 11. Remarkably, the 

trends observed in the recovered energy storage density 

and efficiency from the predicted data closely parallel 

those obtained experimentally beyond and before Tc. 
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Fig. 11 (a, b) Energy storage parameters for predicted data of 

mono (P-E) loops 25 (kV/cm) of BCZT versus temperature. (c) 

Maximum effective capacitance for predicted data of mono (P-E) 

loops 25 (kV/cm) of BCZT 

7 Conclusion 

- In conclusion, this research aimed to explore the 

potential of Artificial Neural Networks (ANNs) in 

accurately forecasting energy storage parameters. 

Especially for (Ba0.85Ca0.15) (Ti0.9Zr0.1) O3 (BCZT) 

ferroelectric materials at different temperature conditions. 

- The research addresses an important topic in the field of 

ferroelectric materials and energy storage. 

- Through extensive experimentation and data analysis, it 

was observed that ANN can effectively capture the 

complex relationship between temperature-induced 

variations and the hysteresis loops of the BCZT material 

through extensive testing.  

- By employing the function fitting technique of ANN, we 

successfully modeled the ferroelectric hysteresis 

mono-loop of BCZT in the scope of the temperature range 

(30:102 ᵒC). 

-This allowed us to develop an accurate and efficient 

model for estimating the energy storage parameters based 

on the predicted hysteresis loops. These findings highlight 

the capability of ANNs to capture intricate relationships 

inherent in ferroelectric material properties and energy 

storage. Thereby solidifying their potential as robust 

prediction tools within this research domain.  

- This research can lead to improved reliability, enhanced 

power management, predictive maintenance, and material 

optimization for diverse electronic applications  

- Future studies might explore alternative network 

architectures or techniques like dropout regularization to 

promote better model generalization across diverse 

operating conditions.  

- For generalization, the application of ANN and 

predicting energy storage can be expanded to other types 

of ferroelectric materials like relaxors or 

anti-ferroelectrics.  
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