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Abstract  The effectiveness of three MobileNet 

variations—MobileNetV1, MobileNetV2, and 

MobileNetV3—in correctly classifying dusty and 

immaculate Photovoltaic (PV) surfaces is investigated. To 

maintain PV panels' efficiency and maximize energy 

production, precise detection of dust accumulation is 

crucial. The demand for automated solutions arises from 

the inefficiency and high labor costs of conventional 

inspection techniques. A dataset consisting of 400 images, 

with an equal number of clean and dusty PV surfaces, was 

used to ensure a fair representation of both groups. Prior to 

being divided into training and validation sets, the images 

underwent preprocessing and normalization. Subsequently, 

each variant of MobileNet underwent training and 

evaluation using this dataset. Performance indicators such 

as training accuracy, validation accuracy, F1-score, and 

loss values were assessed. MobileNetV1 demonstrated 

superior performance, with a training accuracy of 88.53%, 

validation accuracy of 91.25%, and an F1-score of 0.9114. 

MobileNetV3 exhibited the lowest performance, achieving 

a training accuracy of 59.90%, a validation accuracy of 

61.87%, and an F1-score of 0.6115. The study's findings 

establish that MobileNetV1 is the optimal model for 

accurately identifying dusty and clean PV surfaces. The 

research illustrates the viability of using Deep Learning 

(DL) algorithms in PV maintenance, and choosing the 

most suitable algorithm for doing the task. 
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Photovoltaic (PV) systems are a crucial element of 

renewable energy technology. They turn sunlight into 

electricity by utilizing the PV effect in semiconductor 

materials [1]. Solar panels play a vital role in the 

generation of sustainable energy since they have the 

capacity to generate electricity from a renewable and 

unlimited source - the sun [2]. PV systems are being more 

and more utilized in both residential and industrial settings, 

making a substantial contribution to the decrease in 

greenhouse gas emissions and the reduction of reliance on 

fossil fuels [3]. 

The collection of dust on the surfaces of PV systems 

significantly reduces their efficiency and output [4]. Dust 

particles impede sunlight from reaching the solar cells, 

resulting in diminished power generation [5]. Extended 

dust deposition diminishes energy output and hastens the 

deterioration of PV systems, hence reducing their lifespan 

[4]. Consequently, preserving the cleanliness of PV 

surfaces is crucial for ensuring their best performance and 

durability. 

Automated methods for dust detection and removal are 

essential to mitigate the considerable effect of dust on the 

efficiency of PV systems [6]. Conventional cleaning 

techniques are expensive, laborious, and may be 

unsuccessful, especially in extensive solar arrays [7]. 

Automated detection and cleaning solutions enhance 

maintenance consistency and efficiency, optimizing 

energy production and system longevity without 

necessitating operator intervention. These systems 

autonomously monitor dust levels and initiate cleaning 

operations by utilizing sensors, image processing 

algorithms, and artificial intelligence [7]. 

 

Precisely identifying dust collection on PV surfaces is 

essential for preserving efficiency and prolonging the 

system's operating lifespan. Contemporary methods 

depend significantly on manual inspections, which are 

laborious, time-consuming, and susceptible to human 

mistake [8]. These systems necessitate specialists to 

manually access and visually examine each panel, 

mailto:Montaser.A.Elsattar@eng.svu.edu.eg


10                                                                                   Montaser Abdelsattar et al.   

 

 

presenting difficulties for extensive installations or panels 

situated in remote areas [9]. Moreover, manual checks 

elevate maintenance expenses and subject workers to 

possible safety hazards [6].  

 

In addition to human inspections, contemporary dust 

detection systems for PV panels encompass fundamental 

image processing techniques and sensor-based 

methodologies. Conventional image processing techniques 

frequently depend on manually specified features and 

basic thresholding, which can yield limited precision and 

are susceptible to inconsistencies due to fluctuating 

lighting conditions or the inclusion of additional pollutants 

[10]. Sensor-based techniques, including transmittance or 

reflectance measurements, provide real-time data on dust 

accumulation; nevertheless, they are expensive to install 

and maintain, especially in extensive solar farms. These 

sensors are susceptible to ambient influences, potentially 

resulting in erroneous readings [11]. These constraints 

highlight the necessity for more resilient, precise, and 

scalable dust detection techniques. 

 

Progress in Deep Learning (DL) and Convolutional 

Neural Networks (CNNs), especially the MobileNet 

architecture, presents a viable resolution to these issues. 

CNNs can autonomously learn and extract pertinent 

information from photos, facilitating more precise and 

dependable classification of dusty versus clean PV 

surfaces. MobileNet, recognized for its computational 

efficiency and efficacy in picture classification, offers an 

optimal architecture for the development of scalable dust 

detection systems. The capacity of MobileNet variations to 

address the shortcomings of conventional approaches can 

enhance the efficacy of PV system performance 

maintenance. 

 

The primary objective of this project is to build and 

assess image classification algorithms utilizing MobileNet 

variations for the detection of dust on PV surfaces. The 

main goal is to improve the precision and efficacy of dust 

detection relative to current techniques. The suggested 

method aims to provide a scalable and dependable 

solution for real-world applications by autonomously 

extracting pertinent information from photographs of PV 

panels, hence ensuring optimal performance and 

prolonged system longevity. This study emphasizes the 

innovation of employing MobileNet variations in this 

setting, demonstrating their role in enhancing PV system 

maintenance. 

 

The outcomes of this study could transform 

maintenance procedures for PV installations. This study 

tackles the significant problem of efficiency decline 

caused by dust accumulation, contributing to the 

advancement of automated detection methods that can 

lessen the necessity for labor-intensive human inspections, 

decrease maintenance expenses, and enhance safety. 

Furthermore, the improved detection capabilities afforded 

by MobileNet versions may facilitate expedited cleaning 

interventions, ensuring that PV panels function at optimal 

efficiency, thereby increasing energy output from 

renewable sources. 

 

This study's significant innovation is the utilization of 

MobileNet variations for the classification of clean and 

dusty PV surfaces. MobileNet's streamlined and efficient 

CNN design is ideally suited for this task, providing a 

compromise between high classification accuracy and 

minimal computing demands. The research illustrates the 

viability and benefits of utilizing sophisticated DL 

algorithms in PV maintenance, facilitating the 

development of more intelligent, automated systems that 

can be scaled for practical use. 

 

This research paper is structured to provide a thorough 

examination of detecting dusty and clean PV surfaces 

using MobileNet variants for image classification. The 

Introduction sets the stage by highlighting the problem, 

current challenges, and objectives of the study. The 

Methodology section delves into the details of the research 

process, including data presentation, the Machine 

Learning (ML) algorithms used, and the evaluation 

metrics. Following this, the Results and Discussion section 

presents and analyzes the findings, offering insights into 

the model's performance and its implications. Finally, the 

Conclusion summarizes the key outcomes of the research 

and suggests directions for future work, ensuring a 

comprehensive understanding of the study's contributions 

and potential impact. 

 

2 Methodology 

2.1 Data Presentation 

For this investigation, the study employed a dataset of 

400 images of PV surfaces, with half of them being clean 

and the other half being dirty. Fig. 1 depicts the 

distribution of images in the two classes, with an equal 
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number of images in each category. This ensures that the 

dataset used for training and evaluation is balanced.   

 

The images in each category are visually shown in Fig. 2. 

Five clean PV surfaces are shown in the top row (marked 

in green), while five dusty surfaces are shown in the 

bottom row (marked in red). The dataset used in this study 

is better understood thanks to these images, which 

highlight the clear visual differences between the two 

groups. By keeping all sample images at the same square 

size of 224 by 224 pixels, uniformity in the visual 

presentation is achieved. 
 

Fig. 1 Number of images in each class. 

Fig. 2 Examples of clean and dusty PV surfaces. 

 

2.2 ML Algorithms 

This research classified PV surfaces as dusty or clean 

using a variety of ML methods. Data preprocessing, data 

partitioning, model design, model training, model 

assessment, prediction visualization, and reporting are the 

seven main parts of the workflow. Each part plays a 

crucial role in ensuring the accuracy and reliability of the 

final model. The flow is shown in Fig. 3.  

 

The first step in the procedure is data preparation. In this 

phase, the study includes the necessary libraries and set up 

the setup. "Pandas", "numpy", "seaborn", "matplotlib", 

"tensorflow", and "glob" are the important Python 

packages. After setting up the environment, the study 

loads and do preprocessing on the data. The images in the 

dataset are divided into two categories: clean and unclean. 

After the photos are resized to a standard size of 224 by 

224 pixels, labels are applied, designating clean images 

with a value of 0 and dusty images with a value of 1. 

Following loading and preprocessing, the data is split into 

several sets for validation and training. By guaranteeing 

that the model is trained on a certain subset of data and 

subsequently validated on a separate subset, overfitting is 

prevented and the model's ability to generalize to new, 

unidentified data is ensured. 

 

Subsequently, the subsequent phase involves constructing 

the model. The foundation model the study utilizes is 

MobileNetV1, which is a pre-trained CNN. The selection 

of MobileNetV1 is based on its exceptional efficiency and 

accuracy in performing picture classification jobs. We 

incorporate custom dense layers and an output layer into 

the main model to tailor it to our particular classification 

task. Utilizing custom layers allows for the precise 

adjustment of the model's performance. Subsequently, the 

model undergoes training using the provided training data. 

Callbacks like "EarlyStopping" and 

"ReduceLROnPlateau" are used during training to avoid 

overfitting and maximize the Learning Rate (LR). The 

"EarlyStopping" technique terminates the training process 

when there is no further improvement in the validation 

loss. On the other hand, the "ReduceLROnPlateau" 
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technique decreases the LR when a plateau in the 

validation loss is identified. The model undergoes training 

for a maximum of 100 epochs, with validation conducted 

at every epoch. Following the completion of training, the 

model is assessed by employing the validation data. The 

evaluation entails the computation of crucial measures, 

such as validation loss and accuracy, which offer insights 

into the model's performance on data that it has not been 

trained on. In order to more thoroughly evaluate the 

model's performance, the study employs visualizations to 

display its predictions on the validation set. This stage 

entails producing predictions for the validation images and 

then comparing them to the actual labels. Utilizing 

visualizations aids in comprehending the model's 

capabilities and limitations in differentiating between 

pristine and dirty surfaces. 

The last step of the workflow entails producing 

comprehensive reports on the model's performance. This 

involves computing the F1-score, producing a 

classification report, and visualizing the confusion matrix. 

The classification report presents precise measurements of 

precision, recall, and F1-scores for each class, providing a 

thorough assessment of the model's efficacy. The 

confusion matrix provides a visual representation of the 

counts of True Positive (TP), True Negative (TN), False 

Positives (FPs), and False Negative (FN) predictions, 

aiding in the identification of specific areas where the 

model may be making incorrect classifications. The 

outlined procedure, depicted in the flowchart in Fig. 3, 

guarantees a methodical approach to constructing, training, 

and assessing the MobileNet variations for the 

classification of both clean and dusty solar surfaces. By 

adhering to this systematic procedure, the study may attain 

a sturdy and dependable model with a high level of 

accuracy in classification and the capacity to generalize 

well. 

 

Fig. 3 Detailed workflow of the process using MobileNet versions for classifying clean and dusty PV surfaces. 
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Table 1 General comparison of MobileNetV1, MobileNetV2, and MobileNetV3.

Feature MobileNetV1 MobileNetV2 MobileNetV3 

Architecture Original MobileNet 

architecture 

Improved version with better 

performance and efficiency 

Further optimized version with 

lightweight layers 
Year of Release 2017 2018 2019 

Depthwise Separable Convolution Yes Yes Yes 

Bottleneck Layers No Yes Yes 
Squeeze-and-Excitation Modules (SE 

Modules) 

No No Yes 

Inverted Residuals No Yes Yes 
Model Size ~17 MB ~14 MB ~10 MB 

Floating Point Operations (FLOPs) 569 million 300 million 219 million 

Use Cases General purpose, mobile 
applications 

Enhanced performance for mobile and 
edge devices 

Optimized for speed and low-power 
applications 

Pre-trained Weights Availability Yes Yes Yes 

Table 1 presents a thorough comparison of the three 

MobileNet variations, namely MobileNetV1, 

MobileNetV2, and MobileNetV3, emphasizing their 

structural characteristics and applications. MobileNetV1, 

which was announced in 2017, established a basis for 

reducing computational cost by utilizing depthwise 

separable convolutions, a novel technique that greatly 

decreased the amount of computing required compared to 

conventional convolutions. MobileNetV2, introduced in 

2018, enhanced the existing design by integrating inverted 

residuals and linear bottlenecks, resulting in greater 

performance and economy. The model's size and 

processing requirements were greatly reduced in this 

version, making it more suitable for mobile and edge 

devices. The most current version, MobileNetV3, was 

released in 2019. It improved the architecture by using 

lightweight layers and SE Modules, which resulted in 

lower computation costs and smaller model sizes. 

Applications requiring fast speed and low power 

consumption are best suited with this version. Pre-trained 

weights are included in every one of these variants, which 

makes them simple to use in a variety of contexts, from 

general-purpose to highly optimized mobile ones. The 

enhancements described in Table 1 illustrate the 

progression and ongoing enhancement in efficiency and 

performance throughout the many versions of MobileNet 

[12-15]. 

 

2.3 Evaluation Metrics 

To assess how well various MobileNet versions classified 

PV surfaces as dusty or clean, the study used a variety of 

assessment metrics in this study. Accuracy, precision, 

recall, F1-score, and confusion matrices are the primary 

performance metrics. These metrics provide a 

comprehensive understanding of the robustness and 

effectiveness of the models.  

The ratio of accurately predicted instances to the total 

number of instances is used to compute accuracy, which 

serves as a gauge for the model's overall soundness [16]. It 

is described by Equation (1). Where  stands for TNs, 

 for FPs,  for FNs, and  for TPs. 

 

The percentage of TP predictions among all positive 

forecasts is represented by precision. Understanding the 

model's performance is especially helpful when the cost of 

FPs is large [17]. Equation (2) illustrates the calculation of 

precision.  Recall, which is often referred to as sensitivity 

or TP rate, quantifies the percentage of real positives that 

the model properly identifies [18]. When the cost of FNs 

is considerable, it matters. The definition of recall is given 

in Equation (3). The F1-score is a statistic that provides a 

balance between accuracy and recall, calculated as the 

harmonic mean of the two [19]. It is especially helpful for 

datasets that are unbalanced. The formula for the F1-score 

is given in Equation (4). 

 

The confusion matrix offers a comprehensive breakdown 

of the model's performance by displaying the counts of TP, 

TN, FP, and FN predictions. It aids in comprehending the 

specific types of errors made by the model. The metrics 

and their corresponding equations provide a thorough 

evaluation framework for assessing the performance of the 

models in this study. By utilizing these metrics, the study 

can gain a better understanding of the strengths and 

weaknesses of each MobileNet variant in the task of 

classifying clean and dusty PV surfaces. [20-22]. 

 

 

 

           (1) 

              (2) 

              (3) 

      (4) 



14                                                                                   Montaser Abdelsattar et al.   

 

3 Results and Discussion 

This section provides a comprehensive analysis of the 

results obtained from our investigation, which focused on 

the identification of dusty and clean PV surfaces. The 

study utilized MobileNet variations for image 

classification in our research. The performance of 

MobileNetV1, MobileNetV2, and MobileNetV3 was 

assessed using multiple measures, such as training 

accuracy, training loss, validation loss, validation accuracy, 

and F1-score. Furthermore, the performance of each 

model is visually shown using confusion matrices and 

accuracy/loss graphs. 

 

Table 2 unequivocally shows that when it comes to 

training accuracy, validation accuracy, and F1-score, 

MobileNetV1 outperforms the other two versions. With a 

training loss of 0.48003, the MobileNetV1 model achieved 

a training accuracy of 88.53%. 91.25% was the validation 

accuracy, while the validation loss was 0.4077. The model 

has good performance in properly classifying both clean 

and dirty surfaces, as seen by its F1-score of 0.9114. 

 

MobileNetV2 demonstrates strong performance with a 

training accuracy of 83.50%, a training loss of 0.6019, a 

validation loss of 0.5794, and a validation accuracy of 

85.00%. The F1-score of 0.8481 demonstrates its 

dependable performance, albeit slightly inferior to 

MobileNetV1. MobileNetV3 exhibits the poorest 

performance in comparison, with a training accuracy of 

59.90%, training loss of 0.7242, validation loss of 0.7216, 

and validation accuracy of 61.87%. The F1-score of 

0.6115 indicates a restricted capacity to accurately 

differentiate between clean and dusty surfaces. 

 

Table 2 Training and validation metrics for MobileNet 

variants. 

Algorithm Training 

Accuracy 

Training 

Loss 

Val 

Loss 

Val 

Accuracy 

F1 

MobileNetV3 0.5990 0.7242 0.7216 0.6187 0.6115 

MobileNetV2 0.8350 0.6019 0.5794 0.8500 0.8481 

MobileNetV1 0.8853 0.4803 0.4077 0.9125 0.9114 

Table 3 presents the comprehensive classification 

reports for the three MobileNet variations, highlighting 

precision, recall, and F1-score for both classes (clean and 

dusty). The classification data in Table 3 indicate the 

improved performance of MobileNetV1, with excellent 

precision, recall, and F1-scores for both clean and dirty 

classes. Specifically, MobileNetV1 attained a precision of 

0.9000 for clean surfaces and 0.9200 for dusty surfaces, 

with matching recalls of 0.9300 and 0.9000, giving in an 

F1-score of 0.9100 for both classes. This high level of 

performance implies that MobileNetV1 is highly effective 

at correctly identifying both types of surfaces with low 

misclassification. MobileNetV2 likewise performs well, 

reaching precision of 0.8400 for clean surfaces and 0.8600 

for dusty surfaces, with recalls of 0.8600 and 0.8400, 

respectively, yielding to an F1-score of 0.8500 for both 

classes. While somewhat lower than MobileNetV1, 

MobileNetV2 displays robust categorization capabilities. 

MobileNetV3 exhibits inferior performance across all 

classification parameters, achieving a precision of 0.6100 

for clean surfaces and 0.6200 for dusty surfaces, recalls of 

0.6400 and 0.6000, and resultant F1-scores of 0.6300 and 

0.6100, respectively. The results suggest that there are 

considerable difficulties in appropriately categorizing the 

images, resulting in a decreased overall efficiency of 

MobileNetV3. 

 

 

Table 3 Classification report for MobileNet variants. 

Algorithm Class Precision Recall F1-Score Support 

MobileNetV3 Clean 0.6100 0.6400 0.6300 80 

MobileNetV3 Dusty 0.6200 0.6000 0.6100 80 

MobileNetV3 Average 0.6200 0.6200 0.6200 160 

MobileNetV2 Clean 0.8400 0.8600 0.8500 80 

MobileNetV2 Dusty 0.8600 0.8400 0.8500 80 

MobileNetV2 Average 0.8500 0.8500 0.8500 160 

MobileNetV1 Clean 0.9000 0.9300 0.9100 80 

MobileNetV1 Dusty 0.9200 0.9000 0.9100 80 

MobileNetV1 Average 0.9100 0.9100 0.9100 160 

Fig. 4 displays the training and validation accuracy for the 

three variations of MobileNet throughout the training 

epochs. From the Fig. 4 it is evident that MobileNetV1 in 

Fig. 4(a) achieves the highest and most consistent 

validation accuracy, with a clear upward trend and 

minimal fluctuations. The training accuracy also 

demonstrates a steady increase, indicating the model's 

efficiency and stability in learning. MobileNetV2 in Fig. 

4(b) performs well with a consistently rising validation 

accuracy, albeit with slight fluctuations. The training 

accuracy shows a steady upward trend, indicating effective 

learning. On the other hand, MobileNetV3 in Fig. 4(c) 

exhibits significant fluctuations in validation accuracy, 

suggesting instability and challenges in effectively 

learning the classification task. The training accuracy also 

displays instability, highlighting difficulties in model 

convergence. 

 

Fig. 5 depicts the training and validation loss for the three 

variations of MobileNet throughout the training epochs. 

The loss curves in Fig. 5 highlight the superior 

performance of MobileNetV1. MobileNetV1 Fig. 5(a) 

exhibits a clear and consistent decrease in both training 

and validation losses, indicating effective learning and 
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minimal overfitting. The convergence is smooth, 

indicating the model's robustness. MobileNetV2 Fig. 5(b) 

also demonstrates a steady decline in training and 

validation losses, although with more fluctuations 

compared to MobileNetV1. The convergence is 

satisfactory, but the model shows slightly higher validation 

loss towards the end. MobileNetV3 Fig. 5(c) displays 

higher and more irregular losses, which align with its 

lower classification performance. The significant 

fluctuations indicate difficulties in learning and model 

instability. 

 

The confusion matrices in Fig. 6 exhibit the detailed 

performance of each model in differentiating between 

clean and dirty solar surfaces. MobileNetV1 Fig. 6(a) 

displays the maximum accuracy, with 74 clear images 

properly categorized as clean and just 6 misclassified as 

dusty. Similarly, 72 dirty images are correctly categorized 

as dusty with only 8 misclassified as clean. This matrix 

supports the model’s high precision and recall, consistent 

with the metrics in Table 3. MobileNetV2 Fig. 6(b) 

similarly performs well, with 69 clean images correctly 

classified and 11 misclassified, whereas 67 dusty images 

are correctly classified and 13 misclassified. Although 

significantly lower in accuracy compared to MobileNetV1, 

it nevertheless displays robust classification ability. 

MobileNetV3 Fig. 6(c) exhibits reduced accuracy with 

considerable misclassifications. Only 51 clean images are 

accurately classified with 29 misclassified as dusty, while 

48 dusty images are correctly classified with 32 

misclassified as clean. The significant degree of 

misclassification underscores the constraints of 

MobileNetV3 in this particular task. 

Ensuring proper maintenance of a PV cell is crucial in 

order to prevent possible issues and guarantee maximum 

performance. To ensure efficiency, it is crucial to regularly 

clean, examine for damage, and monitor system 

components. To ensure optimal energy production and 

system lifespan, it is crucial to maintain the PV cell in a 

pristine condition, free from dust, dirt, debris, and 

technical malfunctions. This will enable the cell to 

continually deliver the highest achievable power output 

[23-29]. 

 

Fig. 4 Training and validation accuracy for (a) MobileNetV1, (b) 

MobileNetV2, and (c) MobileNetV3. 
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Fig. 5 Training and validation loss for (a) MobileNetV1, (b) 

MobileNetV2, (c) MobileNetV3. 

 

Fig. 6 Confusion matrices for (a) MobileNetV1, (b) 

MobileNetV2, and (c) MobileNetV3 on clean and dusty image 

classification. 
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4 Conclusion 

The effectiveness of three MobileNet 

variants—MobileNetV1, MobileNetV2, and 

MobileNetV3—in correctly classifying PV surfaces as 

dusty or clean is examined in this research study. The 

research aimed to develop an automated and accurate 

method for detecting dust accumulation on solar panels, an 

essential task for maintaining the panels' overall 

performance and efficiency. To provide a fair 

representation of all categories, the 400 images in the 

dataset used for this analysis included an equal number of 

clean and dusty PV surfaces. To evaluate the efficacy of 

each MobileNet variation, the images were preprocessed 

and split into distinct training and validation sets. In the 

bulk of the measurements, MobileNetV1 outperformed the 

other two variations. MobileNetV1 demonstrated its 

robustness and great classification abilities by achieving 

the highest accuracy in both training and validation, as 

well as the best F1-score. With a competitive F1-score and 

good training and validation accuracy, MobileNetV2 

showed promising performance. However, MobileNetV3 

did not perform well, achieving much lower metrics, 

indicating limitations in its ability to accurately categorize 

the images. The test highlights MobileNetV1's outstanding 

performance, obtaining high recall and accuracy on both 

dirty and clean surfaces. Although it showed considerably 

poorer accuracy and recall than MobileNetV1, 

MobileNetV2 still performed well overall. Significant 

misclassifications by MobileNetV3 led to worse recall, 

F1-scores, and accuracy. Confusion matrices and the 

visual representations of the training and validation 

accuracy and loss curves provided more insight into the 

models' performance. The learning process of 

MobileNetV1 showed the greatest degree of consistency 

and stability, exhibiting smooth convergence in both 

accuracy and loss. However, MobileNetV3's poor 

classification performance was clearly related to its 

irregular learning patterns and a significant rise in 

validation loss. According to the research, MobileNetV1 

performs better at identifying dusty and clean solar 

surfaces than the other two MobileNet versions. This 

system is a solid choice for automated inspection systems 

intended to maintain the efficiency of PV panels because 

of its excellent accuracy, precision, recall, and F1-score. 

To further improve the model's performance, future 

research may concentrate on refining the MobileNetV1 

architecture or using fresh techniques for data 

augmentation. Furthermore, testing our method on 

large-scale and diverse datasets may confirm its 

applicability in real-world scenarios. In order to improve 

classification accuracy and robustness, further research 

may investigate the use of more complex DL models or 

hybrid approaches that combine several models. 

 

 

 

 

Abbreviations 

CNN Convolutional Neural Network 

DL Deep Learning 

FN False Negative 

FLOPs Floating Point Operations 

FP False Positive 

LR Learning Rate 

ML Machine Learning 

PV Photovoltaic 

SE Modules Squeeze-and-Excitation Modules 

TN True Negative 

TP True Positive 
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