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Abstract The evolution of image processing has been 

remarkable, transitioning from its initial uses in military 

and medical fields to its widespread integration in modern 

society. This article offers an in-depth examination of the 

historical journey of image processing, charting its growth 

from the mid-20th century to the present era. Critical 

milestones encompass the emergence of digital computers, 

the fusion of Artificial Intelligence (AI) and Machine 

Learning (ML), and recent breakthroughs steered by deep 

learning and the global COVID-19 crisis. Special attention 

is devoted to the development of face recognition 

technology, showcasing an evolution from fundamental 

techniques like Eigenfaces to sophisticated deep learning 

methodologies. These strides have significantly enhanced 

precision and resilience in addressing complexities such as 

fluctuating lighting conditions, obstructions, and pose 

variations. By scrutinizing the past contexts and 

technological advancements in image processing and face 

recognition, this analysis emphasizes the transformative 

influence of these technologies across various domains, 

shaping the future landscape of human-computer 

interaction. 
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1 Introduction  

Image processing has undergone a remarkable 

transformation from its inception, closely entwined with 

technological advancements and the increased 

computational power. Initially applied in military and 

medical fields, image processing has now become a 

crucial tool across various industries, including 

entertainment, healthcare, and security. Its history signifies 

a continuous journey of innovation, expanding the 

capabilities of machines to interpret and engage with 

visual information in increasingly sophisticated ways. 

Figure. 1 shows computer vision over the decades [1]. 

The historical narrative of image processing traces back 

to pivotal developments in the mid-20th century, where 

early applications focused on tasks such as enhancing 

satellite images for military reconnaissance and digitizing 

X-rays for medical diagnostics. The introduction of digital 

computers in the 1950s -1960s empowered researchers to 

utilize algorithms for image manipulation and analysis, 

with techniques like Fourier transforms and edge detection 

laying the groundwork for more intricate analyses. Despite 

these advancements, early image processing was 

constrained by computational limitations, making it a 

specialized domain with restricted accessibility [2-4].  

In the present era, image processing is marked by the 

fusion of Artificial Intelligence (AI) and Machine 

Learning (ML). Modern algorithms, such as 

Convolutional Neural Networks (CNNs), have 

significantly boosted the accuracy and efficiency of 

image-related tasks. These advancements have enabled 

practical applications like facial recognition, autonomous 

driving, and medical imaging diagnostics. Furthermore, 

the widespread availability of powerful hardware, 

including GPUs and TPUs, has democratized the field, 

empowering researchers and developers to experiment 

with advanced algorithms and vast datasets [5-8]. 
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Looking towards the future, the trajectory of image 

processing suggests a shift towards increased automation, 

real-time applications, and deeper integration with 

emerging technologies. Emerging domains like 3D 

imaging, Augmented Reality (AR), and quantum 

computing hold promise for transforming the acquisition, 

processing, and utilization of visual data. Ethical 

considerations, such as privacy concerns in facial 

recognition technology and potential biases in AI models, 

are likely to impact the field's progression. The 

development of explainable AI and privacy-preserving 

methodologies is expected to tackle these ethical 

challenges [9-12]. 

In summary, the evolution of image processing 

embodies the intricate interplay between technological 

advancement, computational capabilities, and societal 

needs. From its humble origins to its current high level of 

sophistication, the discipline continues to push boundaries, 

offering innovative solutions to real-world challenges. As 

image processing progresses, it will remain a fundamental 

pillar of technological advancement, reshaping the 

dynamics of human-machine interaction in the visual 

domain.  

Fig. 1 Computer vision over the decades [1] 

2 Related Work 

The field of image processing has evolved 

significantly since its inception in 1964, undergoing 

transformative changes driven by technological 

advancements and societal needs. To provide a 

comprehensive review of this evolution, we divide the 

timeline into five distinct periods: The Beginning 

(1964–1995), Commercial Viability (1996–2006), 

Mainstream Development for Unconstrained Settings 

(2007–2013), Deep Learning into Face Recognition 

(2014–2019), and After COVID-19 (2020–2024). Each 

period reflects unique advancements, challenges, and 

contributions to the development of image processing. 

In the first period, The Beginning, foundational 

techniques like edge detection and Fourier transforms 

were introduced, establishing the mathematical and 

algorithmic basis for digital image analysis. As 

computational power increased, the second period, 

Commercial Viability, saw the practical implementation of 

these techniques in industries like entertainment and 

medical imaging. The third period, Mainstream 

Development for Unconstrained Settings, marked a shift 

toward real-world applications, with algorithms adapted to 

handle dynamic and unpredictable environments. The 

fourth period, Deep Learning in Face Recognition, 

brought breakthroughs in performance and scalability 

through convolutional neural networks and other 

AI-driven techniques. Finally, the fifth period, after 

COVID-19, highlights how the pandemic accelerated 

advancements in image processing for applications like 

masked face recognition, remote diagnostics, and virtual 

interactions. This exploration delves into the key 

contributions and challenges in each period, outlining the 

trajectory of image processing over six decades. 

2.1. The first period early research findings (1964 - 1995) 

In 1964, Woodrow Bledsoe introduced computational 

facial recognition, supported by an undisclosed 

intelligence agency. Utilizing a computer program, he 

compared a suspect's photo with mugshots in a book, 

evaluating success based on the number of attempts 

required to correctly identify the match compared to the 

total faces in the dataset. The method involved encoding 

each face with a vector of distances between facial 

features, an innovative approach that was computationally 

intensive and slow, processing only around 40 images per 

hour with the technology available at that time (Bledsoe 

1966) [13]. 

Tomkins and McCarter (1964) delved into primary 

affects, which are basic emotions rooted in biology and 

universally recognizable. Their study suggested that these 

effects are distinct, inherent reactions linked with specific 

facial expressions and physiological changes. They 

proposed a framework for classifying these primary 

affects, including emotions like joy, anger, and fear, 

positing that these play a central role in human motivation 

and behavior. Their research has had a broad impact by 

offering foundational insights into the expression and 

perception of emotions across different cultures, 

influencing subsequent studies on facial recognition and 

emotional analysis in psychology and computer vision 

[14]. 

Bruce and Young (1986) presented an elaborate model 

elucidating the intricacies of face recognition, dividing the 

process into multiple stages. They argued that facial 
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recognition entails various cognitive tasks, such as 

perceiving facial features, identifying familiar faces, and 

retrieving associated information like names and personal 

details. Their model distinguished between recognizing a 

face and recalling specific details about the individual, 

recognizing these as distinct yet interconnected processes. 

This framework has been highly influential, providing a 

basis for much of the later research on facial recognition 

in psychology and computer science, especially in 

understanding how individuals process familiar versus 

unfamiliar faces [15]. 

2.2. Commercial viability as new biometrics [1996-2006] 

Bezdek and Pal [16] introduced innovative indices for 

cluster validity assessment, aiming to evaluate the quality 

of clustering outcomes. They put forth metrics such as the 

Partition Coefficient (PC) and the Classification Entropy 

(CE) to gauge the coherence of fuzzy clustering outputs by 

measuring the extent of cluster overlap. Moreover, they 

highlighted the significance of maintaining a balance 

between cluster compactness and separation, introducing 

the Alternative Dunn Index (ADI) as a dependable 

measure capable of accommodating noise and different 

cluster configurations. Their research established a 

structured approach to cluster assessment, thereby 

strengthening the reliability of clustering mechanisms 

across various domains. 

Phillips et al. [2000] presented the FERET evaluation 

methodology, aiming to evaluate the reliability and 

efficacy of facial recognition algorithms. By utilizing the 

FERET database, which comprises 14,126 images of 

1,199 individuals, this research established performance 

benchmarks for algorithms operating in real-world 

scenarios. The methodology encompasses standardized 

protocols for training, evaluating, and comparing 

algorithms, with the objective of pinpointing areas for 

enhancement and direct future investigations. Findings 

from the 1996 FERET test underscored the necessity for 

algorithms capable of addressing variations in lighting, 

facial expressions, and aging, thus paving the way for 

enhancing algorithm resilience [17]. Figure 2 shows a 

schematic of the FERET testing procedure. 

Yang (2001) delved into the realm of face recognition 

by delving into kernel methods, focusing on Kernel 

Principal Component Analysis (KPCA) and Kernel Fisher 

Discriminant Analysis (KFDA) to capture intricate 

higher-order correlations within facial images. By 

leveraging the Yale face database, this approach surpassed 

conventional linear techniques by projecting the input data 

into a multidimensional space to enable more intricate 

feature extraction. Findings indicated that the utilization of 

kernel methods, particularly Kernel Eigenface and Kernel 

Fisherface, yielded reduced error rates and enhanced 

performance compared to standard methods such as 

Eigenface, Fisherface, and ICA. This underscores the 

efficacy of kernel-based strategies in tackling intricate 

face recognition challenges [18]. Figure 3 is a diagram of 

face recognition using kernel methods. 

 

Fig. 2 Schematic of the FERET testing procedure [17] 
 

Yu and Yang [2001] proposed a specialized Linear 

Discriminant Analysis (LDA) algorithm designed for 

high-dimensional data, particularly for face recognition 

tasks. This method, utilizing the ORL face database, aimed 

to eliminate the within-class scatter matrix's null space, 

which lacks discriminative information, and preserve only 

pertinent features. The algorithm successfully attained an 

exact solution based on Fisher's criterion, demonstrating 

effective performance even with large scatter matrices. As 

a result, it enhanced the classification accuracy in face 

recognition, underscoring the effectiveness of LDA 

optimization for high-dimensional data [18]. Figure 3 

explains the direct LDA algorithm steps. 

In their 2003 study, Lu, Plataniotis, and 

Venetsanopoulos introduced an advanced LDA-based 

algorithm aimed at overcoming the constraints of 

traditional LDA methodologies in face recognition. 

Through experimentation on the FERET and AR face 

databases, the proposed method tackles the drawbacks of 

linear discriminant analysis by integrating a more 

computationally streamlined approach, resulting in 

reduced costs and enhanced performance compared to 

Eigenfaces, Fisherfaces, and direct LDA (D-LDA). The 

outcomes demonstrated the superior efficacy of this 

algorithm over existing approaches, offering a more 

pragmatic solution for real-world face recognition 

scenarios attributed to its heightened efficiency and robust 

performance [19]. 

M. Yang [20] delved into sophisticated kernel-based 

approaches for face recognition, expanding upon 

traditional methods such as Eigenfaces and Fisherfaces by 

venturing into the nonlinear domain via kernel functions. 

Through the utilization of kernel principal component 

analysis (KPCA) and kernel Fisher discriminant analysis 

(KFDA), the study showcases enhanced recognition 

performance in scenarios characterized by intricate 

variations in lighting, facial expression, and pose. The 

comparative assessment illustrates that kernel methods 

notably augment the discriminative capacity and 

generalization ability of face recognition systems when 

compared to their linear counterparts. The experimental 
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findings substantiate the efficacy of the proposed 

methodologies on standardized datasets, presenting a 

compelling argument for the adoption of kernel techniques 

in face recognition applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The Direct LDA Algorithm 

 

Fig. 4 A diagram of face recognition using kernel methods 
 

Haar Cascade classifiers are an effective technique for 

object detection. This approach utilizes machine learning, 

where a large set of positive and negative images is 

utilized to train the classifier. Positive images consist of 

the objects that we want the classifier to detect, while 

negative images include everything else that does not 

contain the object of interest [21]. Figure 5 shows how the 

Haar Cascade classifiers work. 

Ahonen, Hadid, and Pietikäinen [2004] introduced a 

technique for facial recognition utilizing Local Binary 

Patterns (LBP) to extract texture characteristics from 

facial images in Fig. 1. The process involves dividing a 

facial image into smaller, non-overlapping sections and 

applying LBP to each segment to capture local texture 

details, which are then aggregated into a comprehensive 

descriptor for the entire face. Through testing on the 

FERET and CMU PIE face databases, this method 

exhibited notable resilience to variations in lighting and 

facial expressions, achieving a high level of recognition 

accuracy. Over time, the LBP-based approach has evolved 

into a standard method in texture-based facial recognition, 

renowned for its simplicity and efficacy across various 

recognition scenarios as shown in Fig. 6 [22]. 

 

 

 

 

 

 

Fig. 5 How the Haar Cascade classifiers work [21] 

2.3. Mainstream development for unconstrained settings 

[2007-2013]  

Krizhevsky et al. presented AlexNet, a sophisticated 

deep convolutional neural network (CNN) tailored for 

wide-ranging image classification tasks. This model 

integrates a series of convolutional and max-pooling 

layers, followed by fully connected layers, culminating in 

a softmax layer for classification purposes. Trained on the 

ImageNet dataset, which comprises a vast collection of 

over 1.2 million high-resolution images spanning 1,000 

categories, AlexNet utilized GPUs to expedite the training 

process. Impressively, in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC), AlexNet achieved a 

remarkable top-5 error rate of 15.3%, surpassing previous 

methodologies and ushering in a new era of deep learning 

advancements in image recognition [23]. AlexNet 

Architecture is shown in Fig. 7. 

 

Fig. 6 Local Binary Pattern (LBP) method [22] 
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Fig. 7 AlexNet Architecture [23] 

Thomas et al. [24] delve into the impact of face gaze on 

cognitive performance among individuals with typical 

development, Autism Spectrum Disorder (ASD), and 

Williams Syndrome (WS). The study involved participants 

undertaking math tasks with and without eye contact from 

the experimenter. The outcomes revealed that sustaining 

eye contact hindered task performance universally, with 

individuals with ASD and WS encountering more 

significant challenges. The research highlights the 

cognitive strain induced by face gaze, disrupting 

simultaneous tasks, especially in those with developmental 

disorders. These results play a pivotal role in 

comprehending the impact of gaze on cognitive load, 

guiding the development of interventions and educational 

approaches. 

In their influential work, Felzenszwalb et al. 

introduced the Deformable Part Model (DPM) for object 

detection. This approach revolutionized the field by 

modeling objects as collections of parts arranged in a 

flexible structure. They employed a discriminative training 

process using latent support vector machines (SVMs). The 

effectiveness of the model was evaluated on the PASCAL 

VOC dataset, which comprises annotated images with 

multiple object categories. By accurately capturing both 

the appearance and spatial relationships among parts, 

DPM set new performance benchmarks for object 

detection tasks [25]. Example detection obtained with the 

person model. The model is defined by a coarse template, 

several higher resolution part templates, and a spatial 

model for the location of each part in Fig. 8. 

 

Fig. 8 Person model output with spatial part templates [25] 

Lowe proposed the Scale-Invariant Feature Transform 

(SIFT), an approach for detecting and describing local 

features in images [26]. SIFT is designed to identify key 

points that are invariant to scale and rotation, enabling 

reliable matching between different images. The 

methodology involves the detection of key points and the 

generation of descriptors based on gradients within 

localized image regions. SIFT has been extensively tested 

on diverse datasets for tasks such as object recognition and 

matching, demonstrating a high degree of robustness to 

changes in scale, rotation, and illumination. As a result, it 

has become a standard technique in the field of feature 

detection and description. 

In Fig. 9, Bay and colleagues introduced the Speeded Up 

Robust Features (SURF) algorithm as a faster alternative 

to SIFT for feature detection and description [26]. SURF 

utilizes integral images and approximations of Hessian 

matrices to efficiently detect key-points and employs a 

simplified descriptor for matching. The method has been 

evaluated on various image matching and object 

recognition tasks, exhibiting similar robustness to SIFT 

but with a notable speed advantage, particularly in 

real-time applications. 

 

Fig. 9 SURF algorithm steps [26] 

Kinect Fusion introduced a technique for dynamic 3D 

reconstruction in real-time by leveraging depth 

information from the Microsoft Kinect sensor. This 

approach involves the ongoing incorporation of depth 

frames into a volumetric model, facilitating detailed 

mapping and camera monitoring instantaneously. 

KinectFusion underwent testing in indoor environments, 

generating intricate and superior quality 3D 

representations rapidly. This advancement paved the way 

for the integration of affordable depth sensors in various 

consumer applications such as augmented reality and 

robotics [27]. Figure 10 shows an example output from 

the system, generated in real-time with a handheld Kinect 

depth camera and no other sensing infrastructure. Normal 

maps (colour) and Phong-shaded renderings (greyscale) 

from our dense reconstruction system are shown.  
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Fig. 10 Comparative output of dense model and sensor input [27] 

In their seminal work on GrabCut, Rother et al. 

introduced a highly effective interactive image 

segmentation technique that leverages graph cuts to 

distinguish foreground from background regions with 

minimal user input. As illustrated in Fig. 11, the method 

begins with a simple user-defined bounding box around 

the target object, which serves as an initial estimate of the 

foreground. GrabCut employs a Gaussian Mixture Model 

(GMM) to model the color distributions of both 

foreground and background pixels. These distributions are 

iteratively refined, and segmentation is performed by 

constructing a graph where each pixel is a node, and edge 

weights encode both color similarity and spatial continuity. 

The optimal segmentation is then obtained via 

min-cut/max-flow optimization, separating the graph into 

distinct foreground and background components. The 

iterative nature of the algorithm allows users to further 

refine the result by marking ambiguous regions, 

improving accuracy without requiring full manual 

segmentation. Evaluated across various challenging 

images, GrabCut demonstrated a strong ability to produce 

precise object boundaries while maintaining a low level of 

user interaction. Because of its balance between 

automation and control, GrabCut has become a 

cornerstone in interactive image editing and computer 

vision applications. Its influence spans tasks such as 

background removal, object cutout, and image matting, 

making it a foundational method in the field [28]. 

 DeepFace represents a landmark advancement in face 

verification through the application of deep learning. 

Leveraging a nine-layer neural network, the model is 

trained on an extensive dataset and incorporates 3D face 

alignment to normalize facial inputs before processing. 

This critical step ensures pose-invariant representations, 

significantly improving the model’s robustness to 

variations in orientation and expression.  Achieving an 

impressive 97.35% accuracy on the Labeled Faces in the 

Wild (LFW) benchmark, DeepFace brought face 

verification performance to near-human levels, marking a 

pivotal moment in the field [29]. As illustrated in Fig. 12, 

the architecture comprises an initial sequence of 

convolution-pooling-convolution layers, followed by three 

locally connected layers and two fully connected layers. 

Notably, the locally connected and fully-connected layers 

dominate the parameter count, collectively contributing to 

over 95% of the model’s more than 120 million 

parameters [29].  This architectural design enables 

DeepFace to capture both spatially localized and globally 

integrated facial features, offering a powerful foundation 

for modern face recognition systems. Its success laid the 

groundwork for subsequent innovations in deep face 

analysis, including masked face recognition, by 

demonstrating the effectiveness of deep neural networks 

combined with precise facial alignment techniques. 

 

 

 

 

 

 

Fig. 11 Segmentation improvement through 

foreground/background annotations [28] 

 

Fig. 12 Overview of the Deep Face network structure [29] 

Histograms of Oriented Gradients (HOG), introduced 

by Dalal and Triggs, detect humans by capturing gradient 

orientations within localized cells, robustly identifying 

edge-defined objects like human silhouettes. Validated on 

the INRIA Person Dataset, it established foundational 

pedestrian detection techniques through exceptional 

efficiency [30]. 

Figure 13 illustrates HOG's core mechanism: detectors 

target silhouette contours (head/shoulders/feet) with peak 

activation in blocks adjacent to edges. Key components:(a) 

Average gradient image (training data)  .(b) Per-pixel max 

positive SVM weight.   (c) Per-pixel max negative SVM 

weights  . (d) Test image. (e) Computed R-HOG descriptor. 

(f,g) R-HOG modulated by SVM weights [30]. 

Shotton et al. introduced a real-time human pose 

estimation framework leveraging depth imagery from the 

Kinect sensor. Central to their approach is a random forest 

classifier that predicts body part labels at the pixel level. 

This eliminated the need for pre-calibration and delivered 

reliable pose estimation across a wide range of complex 

poses within a large-scale internal dataset. This work 

significantly advanced consumer pose estimation and 

directly powered the development of the Microsoft Kinect 

[31]. Figure 14 illustrates representative synthetic and real 
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training data pairs (depth image + ground truth body parts), 

highlighting diversity in pose, body shape, clothing, and 

image crop [31]. 

 

Fig. 13 HOG descriptor responses emphasizing silhouette 

regions [30] 

 

Fig. 14 Depth and ground truth pairs: real vs. synthetic bodies 

[31] 

The PASCAL VOC Challenge presented a 

foundational benchmark for object detection, 

segmentation, and classification, fostering annual 

competitions that attracted a substantial research 

community. The VOC datasets and evaluation standards 

set a normative framework for evaluating object detection 

and segmentation algorithms, driving progress in the field 

and endorsing replicable research [32]. 

ORB (Oriented FAST and Rotated BRIEF) emerged as 

a swift and effective alternative to SIFT and SURF for 

feature detection and description, specifically engineered 

for computational efficiency. By merging the FAST 

keypoint detector with the BRIEF descriptor, ORB proved 

to be suitable for real-time applications. When assessed on 

benchmark datasets, ORB exhibited comparable accuracy 

to SIFT and SURF but at a significantly reduced 

computational cost [33]. Shape Context serves as a 

descriptor utilized to portray shapes based on the spatial 

arrangement of points around each keypoint. Although 

introduced before the 2007–2013 timeframe, Shape 

Context retained its significance as a fundamental method 

for shape matching and recognition activities during this 

period. Validation on datasets containing handwritten 

digits and shape repositories illustrated its resilience to 

deformation and alterations, leading to its widespread 

adoption in shape-oriented object recognition [34]. 

  Between 2007 and 2013, the Viola-Jones framework 

had a substantial influence on the field of face detection, 

despite being published earlier. It especially revolutionized 

real-time applications, thanks to its utilization of Haar-like 

features and a cascade classifier. By employing these 

techniques, the framework can swiftly detect objects, 

obtaining impressive precision across various datasets, 

including those specific to face recognition. This 

efficiency and accuracy greatly contributed to its extensive 

implementation in consumer cameras and surveillance 

systems [35]. The introduction of poselets presents a 

technique for human detection and poses estimation using 

mid-level representation. It relies on body parts that are 

annotated with 3D poses. By combining these parts, 

poselets enhance the capabilities of detection and can 

capture complex pose variations. In evaluations conducted 

on the PASCAL VOC dataset, poselets have achieved new 

performance benchmarks for person detection and have 

paved the way for part-based models [36]. 

He et al. introduced guided image filtering as a rapid 

and edge-preserving filter applicable to tasks such as 

image denoising, detail enhancement, and 

high-dynamic-range (HDR) imaging. Guided filtering 

leverages an input image as a guide to generate smoother 

output images while preserving edges. Through 

evaluations across multiple image processing tasks, this 

method demonstrated superior speed and simplicity 

compared to other edge-preserving techniques, thus 

establishing itself as a beneficial tool in computer vision 

and image processing [37]. Additionally, Dollar et al. 

conducted a thorough assessment of pedestrian detection 

methods by evaluating various detectors on datasets 

including INRIA, Caltech Pedestrian, and Daimler. Their 

comparison emphasized accuracy, speed, and robustness, 

offering valuable insights that influenced future research 

directions in pedestrian detection [38]. 

Tan and Triggs (2007) proposed an advanced 

technique for enhancing face recognition performance in 

challenging lighting conditions. Their method enhances 

local texture feature sets by extending Local Binary 

Patterns (LBP) with techniques like Local Ternary 

Patterns (LTP) and utilizing pre-processing techniques to 

standardize lighting conditions. The approach involves 

robust feature extraction, enabling the capture of intricate 

texture details even in diverse lighting environments. 

Through experimentation on datasets such as Yale B and 

CMU PIE, the improved LTP-based method demonstrated 

superior performance compared to traditional LBP 

methods, showcasing enhanced accuracy and stability, 

specifically in complex lighting scenarios. This research 

has had a significant impact on lighting-invariant face 

recognition methods, particularly in practical 

environments with varying illumination settings [39]. 

Tan and Triggs (2010) enhanced their previous 

research on face recognition in challenging lighting 

conditions by optimizing local texture features and 

incorporating robust lighting normalization techniques. 

The study presents Local Ternary Patterns (LTP)       
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as a refinement of Local Binary Patterns (LBP), enhancing 

texture detail encoding while reducing sensitivity to noise 

during feature extraction. Moreover, they integrated 

adaptive pre-processing approaches, including gamma 

correction, difference of Gaussian filtering, and contrast 

equalization, to mitigate the impact of lighting variations. 

Through evaluation on datasets such as Yale B and 

Extended Yale B, the LTP-based method exhibited 

significant enhancements in recognition accuracy 

compared to traditional LBP methods, proving its efficacy 

for face recognition in settings with unpredictable lighting 

conditions [40]. 

Y. Taigman and L. Wolf (2011) delved into the 

enhancement of face recognition performance in 

uncontrolled settings. Their approach harnesses deep 

learning, particularly deep convolutional networks, trained 

on an extensive dataset comprising billions of facial 

images. This dataset is extensive, encompassing diverse 

poses, lighting conditions, and occlusions, with the goal of 

encapsulating the real-world challenges faced by face 

recognition systems. The authors posit that such a vast 

dataset enables the deep learning model to acquire more 

robust and discriminative features, surpassing the 

limitations of traditional methods. The outcomes exhibit 

noteworthy enhancements in face recognition accuracy 

compared to prior techniques, underscoring the efficacy of 

large-scale data and deep learning in surmounting 

obstacles in uncontrolled face recognition [41]. 

Déniz, Bueno, Salido, and De la Torre (2011) adapted 

the Histograms of Oriented Gradients (HOG) descriptor 

for face recognition, utilizing its resilience in capturing 

facial structure through gradient orientation. Their 

methodology involved extracting HOG features from 

facial images to construct descriptors representing edge 

and gradient distributions across localized regions. 

Validation on the FERET and Yale face datasets 

demonstrated robustness against illumination changes and 

expression variations, yielding significant recognition 

accuracy. This research underscores HOG’s efficacy in 

face recognition—beyond its conventional object 

detection use—by encoding intricate yet consistent facial 

features [42]. Figure 15 is an example input image for 

HOG feature extraction.  

 

Fig. 15 Input image to HOG [42] 

2.4. Deep Learning into Face Recognition [2013-2019] 

Simonyan and Zisserman (2013) conducted a study on 

face recognition using Fisher Vector encoding combined 

with SIFT descriptors. Their approach focused on 

achieving robustness in face recognition. The evaluation 

was done on the LFW dataset, and their method 

demonstrated the effectiveness of traditional approaches as 

strong baselines, even in the presence of emerging deep 

learning models [43]. Mollahosseini et al. (2013) explored 

the fine-tuning of a deep face network for expression 

recognition. By training their model on the CK+ and 

JAFFE datasets, they showcased the transferability of face 

recognition features to other tasks such as expression 

recognition [44]. Schroff et al. proposed the use of triplet 

loss to learn an Euclidean embedding space for faces. This 

allowed for clustering and face recognition with minimal 

supervision. Their FaceNet model, trained on a vast 

dataset of 200 million images, achieved a remarkable 

accuracy of 99.63% on the LFW dataset. This work had a 

significant impact on subsequent research in unsupervised 

face clustering [45]. Sun et al. introduced a CNN that was 

trained to classify 10,000 identities, incorporating 

supervised features that enhanced discrimination. The 

evaluation of their model on the CelebFaces+ dataset 

demonstrated superior performance compared to previous 

methods on the LFW dataset. This highlighted the 

potential of using large-scale identity supervision for 

improving face recognition systems [46]. Chen et al. 

integrated deep features with a Bayesian methodology to 

model the joint distribution of face pairs, capturing both 

intra- and inter-personal variabilities. Their study, 

evaluated on LFW and MS-Celeb-1M datasets, 

demonstrated notable improvements in face verification 

accuracy through the fusion of statistical models and deep 

features [47]. Additionally, Sun et al. (2015) improved 

DeepID by concurrently optimizing for identification and 

verification tasks, resulting in more robust identity 

representations. By applying this approach to CelebFaces+, 

DeepID2 achieved cutting-edge performance on LFW, 

showcasing the advantages of multi-task training in 

enhancing face recognition capabilities [48]. 

Parkhi et al. contributed to the advancement of face 

recognition by employing a 16-layer VGG-style 

convolutional neural network (CNN), known for its 

architectural simplicity and robust performance. Trained 

on a large-scale dataset of 2.6 million face images, this 

effort led to the development of VGGFace, a widely 

adopted pre-trained model in face recognition tasks. The 

model demonstrated strong generalization capabilities, 

achieving high accuracy on the Labeled Faces in the Wild 

(LFW) benchmark and establishing a reliable foundation 

for future research and applications in facial analysis [49]. 

Building on this foundation, Wen et al. introduced the 

center loss function to address limitations in traditional 

softmax-based training. Center loss explicitly encourages 

intra-class compactness and inter-class separability by 
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minimizing the distance between features and their 

corresponding class centers. Evaluated on the 

CASIA-WebFace and LFW datasets, this approach 

produced more discriminative face embeddings, setting 

the stage for subsequent developments in margin-based 

loss functions [50]. Liu et al. extended this line of research 

with the A-Softmax loss, which projects learned features 

onto a hypersphere and enforces class separation through 

angular margins. Their model, SphereFace, trained on 

CASIA-WebFace and the massive MS-Celeb-1M dataset, 

achieved a remarkable 99.42% accuracy on LFW. As 

illustrated in Fig. 16, this angular margin optimization 

offers a more geometrically meaningful separation of 

classes than traditional softmax, reinforcing the efficacy of 

angular constraints for high-precision face recognition 

[51]. Further enhancing the training dynamics, Ranjan et 

al. proposed L2-Softmax, which normalizes feature 

vectors to a fixed L2 norm. This normalization ensures 

uniform feature magnitudes, improving stability during 

training and boosting performance during verification. 

Their experiments on the LFW benchmark confirmed that 

L2-Softmax improves robustness by making the model 

less sensitive to feature amplitude variations, leading to 

consistent and reliable face embeddings [52]. 

 

 

 

 

 
Fig. 16 Standard CNNs can be viewed as convolutional feature 

learning machines that are supervised by the softmax loss [51] 

Together, these contributions—spanning architectural 

refinements, novel loss functions, and normalization 

techniques—have significantly shaped the trajectory of 

modern face recognition research. Liu et al. [53] proposed 

an extension to softmax by incorporating a large margin, 

which encourages greater separation between classes for 

more robust face recognition. Their method was validated 

on LFW and CASIA-WebFace datasets, contributing to 

the increased popularity of margin-based techniques in the 

field. Deng et al. [54] presented ArcFace, an additive 

angular margin loss function designed to learn highly 

discriminative face embeddings. When trained on the 

MS-Celeb-1M dataset and tested on LFW and MegaFace 

benchmarks, ArcFace attained state-of-the-art performance, 

establishing itself as a highly influential method. Figure 

17 demonstrates the framework's global comparison 

mechanisms: sample-to-class and sample-to-subclass with 

angular margins [54]. Wang et al.  [55] applied a cosine 

margin to softmax, enhancing the discriminative capacity 

of learned features. With training on MS-Celeb-1M and 

evaluation on LFW, CosFace achieved an accuracy of 

99.73%, thereby demonstrating the effectiveness of 

cosine-based margin strategies. Zhang et al. [56] proposed 

range loss to mitigate data imbalance by minimizing 

intra-class variance in long-tailed distributions. Evaluated 

on LFW and MegaFace, this approach enhanced 

recognition accuracy for underrepresented classes, 

enabling robust performance on imbalanced datasets. 

Figure 18 illustrates the constructed long-tail dataset, 

where cutting lines demarcate proportions of tail-class 

data [56]. 

 

Fig. 17 Sample-level classification using Arcface and sub-center 

Arcface [54] 

 

 

 

 

 

 

Fig. 18 Long-tailed dataset construction with division boundaries 

[56] 

Deng et al. [57] provided an open-source 

implementation of ArcFace that was optimized for both 

2D and 3D face recognition. With training on various 

datasets, InsightFace became widely adopted due to its 

high accuracy and accessibility for academic and 

industrial applications. 

Wang et al. proposed the integration of an additive 

margin for softmax, which significantly enhanced class 

separability. AM-Softmax was assessed on LFW and 

CASIA-WebFace datasets, delivering competitive 

outcomes and elevating the prominence of margin-based 

approaches in face verification [58]. Duan et al. 

introduced equidistribution of embeddings to mitigate 

intra-class variability, resulting in more resilient 

representations. UniformFace, tested on LFW and 
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Megaface datasets, demonstrated enhanced recognition 

capabilities by fostering a uniform distribution within 

classes [59]. Huang et al. implemented curriculum 

learning, incorporating adaptive margins to facilitate 

gradual learning from easy to challenging samples. 

CurricularFace, evaluated on LFW and Megaface datasets, 

exhibited heightened accuracy, especially on intricate 

samples, highlighting the advantages of curriculum 

learning [60].  

Karkkainen & Joo introduced FairFace—a balanced 

dataset (>108k images) mitigating racial, gender, and age 

biases in face recognition. This enabled equitable model 

training/evaluation, addressing critical ethical gaps [61]. 

Figure 19 visualizes BFW subgroups by gender (rows: 

Female/Male) and ethnicity (columns: Asian, Black, 

Indian, White This dataset provides statistics on facial 

images categorized by ethnicity and gender, including 

Asian (female and male), Black (female and male), Indian 

(female and male), and White (female and male), as well 

as aggregated totals.  Each subgroup contains 2,500 face 

images, resulting in a total of 20,000 face images across 

all categories. Every subgroup consists of 100 subjects, 

with each subject contributing 25 images.  For positive 

pairs (i.e., images of the same individual), there are 30,000 

pairs per subgroup, totaling 240,000 positive pairs. For 

negative pairs (images of different individuals), the 

numbers range from 85,016 to 85,232 per subgroup, with 

a total of 681,379 negative pairs.  The total number of 

image pairs (positive and negative combined) ranges from 

115,016 to 115,232 per subgroup, summing up to 921,379 

total pairs used in the evaluation. 

[61].

 

Fig. 19 BFW dataset partitioned by gender (rows) and ethnicity 

(columns) [61] 

The Labeled Faces in the Wild (LFW) dataset [62] was 

first introduced in 2007 as a benchmark dataset to assess 

face verification and recognition algorithms. It consists of 

13,233 images portraying 5,749 individuals under diverse 

and uncontrolled conditions, sourced from various online 

platforms. The dataset exhibits significant variations in 

pose, lighting, and facial expressions, serving the primary 

purpose of face verification by determining if two images 

depict the same person. Researchers commonly utilize 

standard or restricted protocols for algorithm evaluation to 

enable consistent comparisons. 

In contrast, the YouTube Faces Dataset (YTF) [63], 

established in 2011, focuses on dynamic face recognition 

in real-world scenarios. It includes 3,425 video sequences 

of 1,595 individuals from YouTube, emphasizing 

variations introduced by motion, illumination, and pose. 

Each video is tagged with the subject’s identity, and pairs 

of videos are provided to assess verification performance. 

YTF's emphasis on temporal data presents a distinctive 

challenge compared to static image datasets, requiring 

models to handle complexities like motion blur and varied 

frame quality. 

The CASIA-WebFace dataset [64], unveiled in 2014, 

is a vast collection containing 494,414 images of 10,575 

subjects, aimed at supporting the training of deep learning 

models with extensive and diverse data. Images sourced 

from the internet offer variations in lighting, pose, and 

expression, rendering it valuable for training deep 

convolutional neural networks. Despite criticisms 

regarding label quality, CASIA-WebFace remains 

prominent for pretraining face recognition models, 

typically followed by fine-tuning on task-specific datasets. 

Additionally, the VGGFace dataset [65], initiated in 

2015, comprises 2.6 million images of 2,622 individuals 

and VGGFace2, an enhanced version released in 2017 

with 3.31 million images illustrating 9,131 subjects. 

VGGFace2 improved on its predecessor by incorporating 

more diverse demographics, poses, ages, and expressions. 

These datasets are extensively used for training deep 

learning models, especially convolutional neural networks, 

due to their balanced representation of gender and 

ethnicity, supporting generalizable face recognition 

systems through supervised and transfer learning 

approaches. 

2.5. After Covid-19 [2020-NOW] 

The COVID-19 pandemic has significantly impacted 

various technologies, particularly face recognition systems. 

The widespread adoption of mask-wearing mandates 

presented a unique challenge for face recognition software, 

as masks obscured critical facial features such as the nose 

and mouth that are typically crucial for precise 

identification. Consequently, this situation sparked a 

notable increase in attention and investment in 

mask-compliant face recognition technology. Developers 

were compelled to swiftly adapt to maintain accuracy and 

effectiveness, concentrating on algorithms capable of 

identifying partial faces or placing greater emphasis on the 

eye area for recognition. This technological shift signified 

a significant advancement in the field, considering that 

traditional face recognition systems were not originally 

equipped to handle partial facial information [66]. 

During the pandemic, the use of face recognition 

technology to monitor mask-wearing and social distancing 

guidelines raised concerns about privacy and ethics. 

Governments and institutions implemented surveillance 

measures, leading to debates about the balance between 
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public health and civil liberties. The pandemic also 

accelerated the development of face recognition 

technology for mask compliance. These advancements 

have the potential for broader applications in low-visibility 

environments. However, stronger regulatory frameworks 

are needed to ensure responsible and transparent use of 

this technology. The study by Amjad Bashayreh et al. 

utilized FaceNet with triplet loss to optimize recognition 

accuracy for both masked and unmasked faces, achieving 

better results for masked faces compared to the baseline. 

[67- 69]. 

In the study conducted by Nagrath et al., their 

objective was to develop a lightweight and real-time face 

mask detection system. They utilized datasets from Kaggle 

and PyImageSearch and achieved an accuracy of over 

90% on the detection tasks. This high accuracy 

demonstrates the practicality of the system for embedded 

applications such as surveillance systems [70]. Badr 

Lahasan et al. introduced a two-branch CNN 

(Convolutional Neural Network) model that addressed the 

challenges posed by occlusions like masks. One branch of 

the model focused on visible parts of the face, while the 

other branch adapted to handling occlusions. By training 

the model on a simulated masked dataset, they 

demonstrated improved resilience to occlusions compared 

to single-branch approaches [71]. Aswal et al. presented a 

two-step method called RetinaFace and VGGFace2 

Integration. This method combines RetinaFace for face 

detection and VGGFace2 for face verification, with 

YOLOv3 used to enhance speed and accuracy. The 

method was tested on video datasets with varying 

environmental conditions and achieved an impressive 

accuracy of over 92%, indicating its robust performance in 

real-time applications [73]. Furthermore, the researchers 

optimized the embedding process by experimenting with 

triplet loss using masked and unmasked combinations. The 

results showed that models trained with combined triplets 

of masked and unmasked pairs achieved well-balanced 

performance on mixed datasets [74].  In addition, the 

researchers utilized a modified VGG16 model with 

specialized layers to excel at recognizing partially 

occluded faces. The model achieved an accuracy of 91% 

on masked faces when evaluated on the RMFRD dataset. 

This highlights the advantages of leveraging layer-specific 

optimizations in CNN architecture for masked face 

recognition [75].

 

Table 1 Comparison of various face datasets, highlighting their features, advantages, and limitations before 2019. 

Dataset Size 
Number of 

Individuals 

Image 

Type 
Features Advantages Limitations 

FairFace[61] 

108,501 

images 
7,000+ 

Diverse 

ethnicity 

faces 

Balanced data across seven 

racial groups. Annotated for 

gender and age. 

Diversity in ethnicity and 

balanced representation. 
Suitable for fairness and bias 

analysis. 

Limited in 

real-world 
conditions (e.g., 

varia 

LFW [62] 
13,233 

images 
5,749 Static 

Real-world variations in pose, 

lighting, and expression 

Well-established benchmark for 

face verification 

Limited diversity, 
low resolution, 

uncontrolled 

conditions 

YTF [63] 3,425 videos 1,595 Video 

Variations in illumination, 

pose, expression, and 

background 

Focus on video-based 
recognition, temporal modeling 

Low resolution, 

motion blur, video 

quality variability 

MS-Celeb-1M [64] 10M images 100,000 Static 
Large-scale, diverse faces, 

varied poses and expressions 

Massive size, suitable for 

large-scale recognition 

Privacy concerns, 
noisy data, 

mislabeling issues 

VGGFace/VGGFace2 [65] 
2.6M/3.31M 

images 
2,622/9,131 Static 

Diverse demographics, poses, 

and expressions 

Balanced distribution, 

high-quality images 

Biases in 

internet-sourced 

images, 
underrepresented 

groups 
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By leveraging insights extracted from the specific 

YOLOv3 model trained on masked face datasets, this 

system successfully attained notable accuracy 

improvements while concurrently reducing the duration 

required for training. Tailored for swift face recognition 

within surveillance contexts, the YOLO-based framework 

exhibited efficacy even on limited datasets without 

compromising accuracy significantly [76]. Moreover, 

MAN was introduced to enhance face recognition 

performance by adapting to mask-induced occlusions, 

leveraging the WebFace42M dataset from ICCV-MFR for 

model training. MAN integrates mask-aware 

methodologies to address occlusions, employing 

stochastic gradient descent (SGD) for optimization 

purposes. Empirical findings demonstrate MAN's 

proficiency in accurately identifying masked faces in 

uncontrolled settings, surpassing the baseline ICCV-MFR 

standards [77]. Additionally, the enhancement of the 

ArcFace model involved the incorporation of a parallel 

output layer specifically dedicated to mask detection, 

utilizing MaskTheFace for synthesizing mask variations. 

The Multi-Task ArcFace model integrates a tailored loss 

function amalgamating ArcFace principles and mask 

prediction losses, yielding robust outcomes when tested on 

diverse masked face datasets encompassing various mask 

types like N95 respirators and cloth masks [78]. An 

integrated strategy combining ArcFace with ensemble 

techniques was proposed to advance masked face 

recognition capabilities. Leveraging publicly available 

masked face datasets, this ensemble configuration 

significantly amplified accuracy levels in identifying both 

masked and unmasked faces, rendering it apt for security 

applications in real-world contexts [79].  

A CNN-based framework achieved real-time mask 

detection in public spaces, validated on RMFD and MAFA 

datasets. The model delivered high accuracy with 

near-instant processing, confirming viability for embedded 

surveillance systems. Figure 20 illustrates its 

pose-invariant operation: face angle parsing via skeletal 

key point mapping [80]. 

The Convolutional Visual Self-Attention Network 

(CVSAN) integrates convolutional and self-attention 

mechanisms to enhance masked face recognition. By 

jointly capturing local features (e.g., eyes) and global 

facial context, it achieves robust performance across 

masked/unmasked scenarios. Trained on Masked 

VGGFace2, CVSAN outperforms conventional methods 

with occlusion resilience and real-time efficiency. 

Ablation confirms both pathways are essential—removing 

either causes marginal performance loss [81]. Figure 21 
illustrates the CVSAN architecture, highlighting the 

dual-pathway structure that underpins its effectiveness in 

masked and unmasked face recognition tasks.  

MaskFaceNet was developed to preserve identity 

features in masked images by utilizing a pre-trained 

VGG-16 network for feature extraction. Trained on 

synthetic masked face datasets, the model exhibited high 

accuracy in identity recognition despite occlusions [82]. 

 

Fig. 20 Parsing of the different angles of face depending on key 

points’ map of human skeleton [80] 

 

Fig. 21 CVSAN Architecture [81] 

 

By leveraging MobileNetV2 with the SSD framework, 

this method was fine-tuned for resource-constrained 

environments, achieving over 90% accuracy on datasets 

like PyImageSearch. It facilitates lightweight, real-time 

detection suitable for mobile and embedded systems [83]. 

M. Iqbal et al. explored dynamic mask simulation 

techniques to enhance model generalization for real-world 

masked faces. By using the CelebA dataset, the models 

were assessed under various simulated occlusion scenarios, 

demonstrating improved resilience to mask variations [84]. 

An attention mechanism was incorporated into CNN 

layers to boost mask recognition accuracy, particularly for 

low-quality surveillance footage. Trained on a combined 

dataset of real and synthetic masks, this approach 

significantly surpassed traditional CNN models [85]. 

Utilizing a GAN-augmented dataset, researchers 

enhanced a fusion model to improve masked face 

recognition by generating diverse masked faces. This 

approach led to high accuracy on extensive datasets, 

proving effective for both real and synthetic images [86]. 

Additionally, enhancing FaceNet with a cosine annealing 

mechanism for learning rate adjustments improved 

training efficiency. By employing three CNN architectures 

-InceptionResNetV2, InceptionV3, and MobileNetV2 - on 

masked and unmasked faces, the model achieved over 
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93% accuracy on masked face recognition tasks while 

maintaining computational efficiency [87].  In another 

study by M. Shatnawi et al., deep transfer learning was 

applied using six CNN architectures to recognize masked 

faces with a custom-built dataset. The model exhibited 

high recognition accuracy and reduced training times, 

rendering it suitable for applications like door access 

control. The adaptability of the model to real-world 

conditions was evident through varying accuracy rates 

with different CNNs [88].  A dual-branch CNN model 

was proposed to address visible facial parts and occluded 

regions like masked areas separately. By leveraging 

simulated masked datasets, the model showed robustness 

against occlusions, highlighting the effectiveness of 

specialized architectures for handling masked faces [89].  

Furthermore, a lightweight model utilizing MobileNetV2 

was developed for real-time detection of masked faces. 

Trained on datasets from platforms like Kaggle, the model 

achieved an accuracy exceeding 90%, showcasing 

practical applicability for surveillance and embedded 

systems requiring efficient masked face detection [90]. 

The researchers utilized a modified YOLOv3 model, 

which incorporated transfer learning capabilities, to 

facilitate swift detection in surveillance scenarios. 

Through training on a dataset comprising masked faces, 

the model was optimized to accurately identify individuals 

wearing masks. It demonstrated remarkable accuracy rates, 

rendering it suitable for real-time applications where quick 

identification is critical [91]. This study focused on 

developing lightweight architectures and employed 

MobileNetV3 in conjunction with transfer learning for 

masked face recognition. The emphasis was on 

resource-constrained settings, particularly mobile devices. 

By utilizing datasets that encompassed variations in 

lighting conditions and mask styles, the model achieved 

high levels of precision in low-compute environments. 

Consequently, it emerged as a promising solution for 

on-device masked face detection and recognition 

applications [92]. The researchers also employed transfer 

learning techniques on the VGGFace2 dataset to fine-tune 

masked face recognition. By incorporating modified 

training pipelines that included both masked and 

unmasked face data, the model attained robust recognition 

performance and demonstrated effective generalization to 

datasets containing diverse occlusions [93]. 

Wu introduced a refined CNN-based model tailored for 

efficient mask detection and recognition, emphasizing 

real-time functionality for embedded systems. By 

distilling larger CNNs, the model attained a commendable 

level of accuracy while diminishing computational 

requirements, rendering it suitable for utilization on 

devices with constrained processing capabilities. [94]. 

Moreover, by combining YOLO for detection and 

EfficientNet for recognition, this study addressed masked 

face recognition in surveillance settings. The model 

demonstrated notable performance on real-time video 

datasets, delivering superior detection and recognition 

outcomes amidst diverse environmental conditions, 

including low-light environments. [95] . 

The Real-World Masked Face Dataset (RMFD) 

comprises around 95,000 images depicting masked and 

unmasked faces of 525 individuals. Its creation aimed to 

tackle the difficulties in recognizing occluded faces. This 

dataset includes a well-balanced representation of both 

masked and unmasked faces encountered in everyday 

settings, rendering it appropriate for tasks related to 

detection and recognition. RMFD emphasizes top-notch, 

real-world images, predominantly sourced from the 

Chinese population. Widely utilized in studies, RMFD 

serves as a valuable resource for masked face recognition, 

especially relevant during and post the COVID-19 

pandemic [96]. 

Masked Face-Net is a synthetic dataset that contains 

133,000 images. These images were created by applying 

digital masks to faces sourced from the FaceNet dataset. 

The dataset incorporates diverse mask styles, orientations, 

and positions to replicate real-world conditions. Its 

purpose is to offer a standardized and expandable dataset 

for training and testing models that detect and recognize 

masked faces. Despite being synthetic, it offers advantages 

due to its diversity and the capacity to generate a balanced 

mix of masked and unmasked samples. As a result, it is 

widely favored for initial model development stages [97]. 

The Masked Faces Dataset (MAFA) comprises 30,811 

images of masked faces sourced from online platforms. 

Emphasizing real-life settings, the dataset showcases a 

range of mask variations, levels of occlusion, and 

environmental settings. Its main focus is on facilitating 

masked face detection, featuring annotations like 

bounding boxes and mask visibility information. Although 

MAFA stands out for its diverse occlusions, it does not 

offer identity labels, confining its utility to detection tasks 

rather than recognition endeavors. Nonetheless, it serves 

as a valuable tool for assessing the resilience of detection 

algorithms under demanding circumstances [98]. 

The MFR2 dataset consists of around 53,000 images 

depicting both masked and unmasked faces in a variety of 

conditions, such as different lighting, poses, and 

backgrounds. This dataset is tailored to assess how well 

facial recognition systems perform when faced with 

masked individuals in real-world situations. Emphasizing 

diversity, MFR2 aims to enhance the resilience of models 

trained on it against practical challenges. Nevertheless, the 

dataset lacks extensive demographic details and identity 

annotations, limiting its usability for tasks demanding 

precise identity recognition [99]. 

MaskedCelebA, an extension of the CelebA dataset, 

incorporates digital masks onto a portion of its 200,000+ 

images. While preserving CelebA's detailed annotations 
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such as identity labels, attributes, and landmarks, 

MaskedCelebA proves valuable for tasks like transfer 

learning and model benchmarking. It offers a mix of 

masked and unmasked examples for balanced 

experimentation. Despite leveraging the comprehensive 

information from CelebA, the synthetic masks limit 

MaskedCelebA in terms of variability and realism 

compared to real-world data [100]. 

The Simulated Masked Face Dataset (SMFD) is a 

synthetic dataset generated by overlaying digital masks on 

preexisting face datasets like LFW. It aims to enhance 

diversity by varying mask styles, colors, and placements 

to assess how well face detection and recognition models 

perform when faced with occlusion challenges. SMFD 

offers extensive customization options, enabling 

researchers to expand data based on particular needs. 

Nonetheless, due to its use of artificial masks, SMFD falls 

short in encapsulating the genuine authenticity and broad 

diversity present in real-world datasets [101]. 

 

 

COVID-MFR is a dataset created amid the COVID-19 

crisis to support studies on the detection and recognition 

of masked faces. This dataset comprises a mix of authentic 

and synthetic images, showcasing a wide range of 

demographics and settings. It encompasses scenarios 

specific to the pandemic, which enhances its suitability for 

endeavors related to public safety and monitoring health 

compliance. Despite its pertinence to current research, the 

documentation and thorough demographic analysis are 

lacking, constraining its broader utility [102]. 

MASKS-LFW is a synthetic adaptation of the 

renowned Labeled Faces in the Wild (LFW) dataset, 

wherein digital masks are superimposed on the authentic 

facial images. This version retains the original identities 

and annotations present in LFW, enabling researchers to 

conduct direct evaluations of model performance on both 

masked and unmasked data. While MASKS-LFW serves 

as a valuable resource for benchmarking masked face 

recognition algorithms, its utility is constrained by the 

simplistic nature of the synthetic masks and the 

comparatively modest scale of the initial LFW dataset 

[103].
 

Table 2 Comparison of various masked face datasets, highlighting their features, advantages, and limitations. 

Dataset 
Number 

of Images 

Number of 

subjects 

Source  

of Photos 

Number of 

Publications 
Advantages Disadvantages Nationality 

RMFD  

[96] 
95,000 

525 

individuals 

Real-world 

(Wuhan 
University) 

100+ 
Real-world data; balanced 

masked/unmasked faces. 

Limited demographic 

diversity; primarily 
Chinese individuals. 

Chinese 

Masked 

Face-Net  

[97] 

133,000 

(synthetic) 

~12,000 

individuals 

Synthetic 

(FaceNet 

derivation) 

50+ 

Large scale; diverse mask 

styles; easy to generate 

variants. 

Synthetic data; lacks 

real-world variations. 

Diverse 

(original 

FaceNet data) 

MAFA 

 [98] 
30,811 

N/A (for 

detection 
only) 

Internet 

(scraped 
images) 

70+ 

Extensive occlusion levels 

and mask types; annotated 
for detection tasks. 

Focused on detection 

only; fewer identity 
labels. 

Predominantly 

Asian 

MFR2  

[99] 
53,000 

3,000+ 

individuals 
Real-world 30+ 

High variability in pose, 

lighting, and background; 
real-world images. 

Limited in total size 

compared to 
synthetic datasets. 

Diverse 

MaskedCelebA 

[100] 

202,599 

(synthetic) 

10,177 

identities 

Synthetic 

(CelebA 
derivation) 

20+ 

Consistent with CelebA 

annotations; excellent for 
transfer learning. 

Synthetic masks may 

not fully replicate 
real-world scenarios. 

Diverse 

(CelebA 
demographics) 

SMFD 

 [101] 

100,000+ 
(synthetic) 

13,233 

(from LFW, 

others) 

Synthetic 

(from datasets 

like LFW) 

20+ 

Wide variability in mask 

positions and styles; 
enhances robustness 

testing. 

Fully synthetic; lacks 

real-world 

occlusions. 

Based on 
source dataset 

COVID-MFR 

[102] 

20,000 

(mixed) 

~2,000 

individuals 

Real-world 

and synthetic 
10+ 

Real-world 
pandemic-specific data; 

highly relevant for 

COVID-era use cases. 

Relatively small 

dataset size. 
Diverse 

MASKS-LFW 

[103] 

13,000+ 

(synthetic) 

5,749 

identities 

Synthetic 
(LFW 

derivation) 

50+ 
Derived from the 

well-known LFW dataset; 

ideal for benchmarking. 

Limited to LFW 

demographics; no 

real-world masked 
data. 

Based on 
LFW 

demographics 

3 Conclusion 

The evolution of image processing, from its origins to its 

current significance, demonstrates a fascinating fusion of 

human creativity and technological advancement. 

Beginning with fundamental methods and progressing to 

the impactful capabilities of deep learning, image  

 

processing has broadened its scope, facilitating 

applications in security, healthcare, autonomous systems, 

and entertainment. Recent breakthroughs, especially in 

facial recognition, have established new standards in 

precision and versatility, even in challenging scenarios like 

partial obstructions and varying lighting conditions. 
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Nonetheless, as the field undergoes continuous 

development, certain hurdles persist. Ethical concerns, 

encompassing issues of privacy and potential biases in AI 

models, necessitate careful consideration to ensure ethical 

progress. Future advancements Will focus on prioritizing 

real-time processing, augmented reality, and quantum 

computing, offering innovative possibilities that will 

revolutionize various industries and daily experiences. 

Through fostering interdisciplinary cooperation and 

addressing ethical obligations, the image processing 

community can unleash the full potential of this 

technology, fostering a more effective, fair, and 

interconnected global landscape. 
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