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Abstract— Providing electricity to remote areas is more 

expensive and technically challenging than in grid-

connected areas. Meanwhile, the effects of climate change 

have been exacerbated by overreliance on fossil fuels such 

as coal, oil, and natural gas used for power generation, 

transportation, and industry, leading to high CO2 emissions 

and environmental degradation. In response to fuel 

depletion and energy crises, researchers have turned to 

clean, renewable alternatives including wind, Photovoltaic 

(PV), geothermal, hydropower, and green hydrogen. 

Despite their sustainability, the intermittent nature of 

renewable resources raises concerns about energy reliability, 

especially in off-grid applications. To address this problem, 

Integrated Hybrid Renewable Energy Systems (IHRES) 

combine multiple renewable sources with storage solutions 

such as batteries, supercapacitors, and fuel cells in addition 

to a backup Diesel Generator (DG). This paper presents a 

techno-economic analysis of a standalone 

PV/wind/DG/battery system for New Minya, Egypt, using 

real-time meteorological data. Advanced metaheuristic 

algorithms, along with Demand Side Management (DSM), 

Load Following (LF), and Cycle Charging (CC) strategies, 

are applied to optimize system sizing and minimize the Cost 

of Energy (COE), while meeting constraints such as Loss 

of Power Supply Probability (LPSP) and dummy energy. 

Among eight tested optimization algorithms, the Salp 

Swarm Algorithm (SSA) demonstrated the best 

performance, delivering the most reliable and cost-effective 

microgrid configuration. 

 

Keywords:. Microgrids; Demand Side Management 

(DSM); Cost of Energy (COE); Renewable Energy; Loss of 

Power Supply Probability (LPSP); Uncertainty; 

Optimization. 
 

Received: 15 May 2025/ Accepted: 3 September 2025 

 Mohamed A. Mohamed, dr.mohamed.abdelaziz@mu.edu.eg,  

1. Electrical Engineering Department, Faculty of Engineering, Minia 

University, Minia 61519, Egypt 

 
 

1 Introduction  

1.1 Motivation and persuasion 

To promote a clean, sustainable, and well-developed 

environment powered by Renewable Energy (RE), many 

countries have turned to developing remote areas by 

establishing new residential cities to accommodate growing 

populations [1,2]. Extensive planning and feasibility 

studies have been conducted to explore the electrification 

of these areas through grid extension. However, results 

have shown that connecting these remote regions to the 

national grid is prohibitively expensive and, in some cases, 

technically constrained [3-7]. 

Additionally, continued dependence on fossil fuels-such 

as diesel, natural gas, coal, mazut, and oil for power 

generation, transportation, and industrial use, contributes 

significantly to climate change [8,9]. These resources are 

finite and cause environmental degradation due to the 

emission of Greenhouse Gases (GHGs), especially Carbon 

Dioxide (CO2) [10-12]. 

In response, many countries are increasingly turning to 

clean, renewable, and environmentally friendly energy 

sources-such as Photovoltaic (PV) energy, wind energy, 

bioenergy, Heat Pump Technologies (HPT), geothermal, 

tidal, Green Hydrogen (GH), Hydropower (HP), and ocean 

energy as sustainable alternatives to fossil fuels [13,14]. 

The International Energy Agency (IEA) projects that 

almost 3700 GW of new renewable capacity will be 

installed worldwide between 2023 and 2028. By 2028, 

renewables are projected to supply over 42% of the world's 

electricity, with PV and wind energy experiencing annual 

growth rates of 9.5% and 6.1%, respectively, between 2020 

and 2028 [15]. In Egypt, PV and wind are among the most 

promising renewable energy sources. 

Despite their potential, the intermittent nature of solar 

radiation and wind speed remains a significant obstacle [16], 

making it difficult to depend mainly on these sources to 

power microgrids. While connecting RE microgrids to the 
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national grid in a two-way power flow configuration can 

help stabilize supply [17-19], such integration is often 

financially and technically impractical in isolated regions 

[20-22]. 

As a viable alternative, hybrid systems that integrate 

various renewable and conventional energy sources, along 

with energy storage technologies such as batteries, Fuel 

Cells (FC), supercapacitors, Flywheels (FWs), molten salt, 

hydroelectric pumped storage (HPSS), and compressed air 

can offer more reliable and cost-effective solutions. 

Incorporating a standby Diesel Generator (DG) further 

enhances system reliability [23,24]. 

This study aims to determine the optimal sizing of 

components for an isolated hybrid energy system consisting 

of PV cells, Wind Turbines (WT), DGs, and batteries for 

New Minya City in Egypt. The system is designed using 

real-time meteorological data, such as global horizontal 

irradiation (GHI) and wind speed recorded at 50 meters. 

1.2 Literature review on optimization techniques and sizing 

methods 

Several studies have explored the techno-economic 

sizing of standalone hybrid renewable energy systems 

(HRES), particularly for applications in remote areas. 

These studies present various system configurations, with 

the most common combinations involving solar PV and 

wind energy, often supported by battery storage or diesel 

generators for backup power [25-27]. Alternative 

configurations utilize other renewable sources [28,29], with 

excess energy stored in different types of storage 

technologies [30,31]. Overall, sizing approaches for HRES 

can be grouped into three primary categories: 

1.2.1 Sizing hybrid energy systems with software tools 

Several commercial software tools, primarily developed 

in C++ for Windows platforms, are widely used for hybrid 

energy system sizing and analysis: 

RETScreen (Canada, 1998) supports energy system 

sizing with technical, financial, and environmental 

evaluations, including system losses and cogeneration. The 

latest version is a multi-agent tool designed to optimize PV 

systems, WT, DG, and battery storage, achieving more than 

a 99% reduction in greenhouse gas emissions through the 

use of renewable energy sources [32,33]. 

iHOGA (Improved Hybrid Optimization by Genetic 

Algorithm) optimizes hybrid systems combining renewable 

and conventional resources (e.g., PV, WT, FC, hydro, 

batteries, DG. It reduced CO2 emissions by 73.8% and 

unmet load by 68% in a Paris-based PV/WT/DG/Battery 

case study [34]. 

 

Hybrid2 (1996, University of Massachusetts) analyzes 

PV/WT/battery-based systems with high performance. It 

was applied in sizing a PV/WT/FC system in Chicago [35-

37]. 

HOMER (1993, NREL) is intended for both on-grid and 

off-grid systems. In Shiraz, it was used to size a 

PV/WT/DG/Battery system, resulting in a 43.9% 

renewable energy contribution while reducing costs (9.3–

12.6 c/kWh) and CO₂ emissions [38,39]. 

HybSim (1987, Sandia National Labs) simulates off-grid 

hybrid systems (PV, DG, batteries), offering techno-

economic analysis and reliable cost predictions. It requires 

detailed load, weather, and economic data [40,41]. 

TRNSYS (1975, Universities of Wisconsin and Colorado) 

started as a thermal system simulator and now supports 

hybrid systems, including solar thermal and PV for HVAC-

integrated buildings. It provides detailed thermal and 

electrical system analysis [42,43]. 

Dymola (ISE, Germany) models hybrid systems with PV, 

WT, DG, FC, and batteries, focusing on life cycle cost 

analysis [44]. 

1.2.2 Sizing hybrid energy systems with traditional 

methods 

Traditional or deterministic methods are widely used for 

sizing hybrid energy systems. The four primary approaches 

include: 

• Analytical Method: 

This method models the hybrid energy system with 

numerical equations and uses system sizing as a viability 

function. In South Africa, it optimized photovoltaic panels 

and wind turbines, achieving an energy cost of 0.97 €/kWh 

and annual production of 100 GWh [45]. Although it is fast, 

the approach lacks flexibility in general optimization 

applications. 

• Iterative Method: 

This iterative algorithm optimizes the design by 

minimizing energy cost and maximizing reliability. Applied 

to a hybrid system of PV panels, wind turbines, and battery 

storage in Brazil, the lifecycle cost was $25,672 [46]. 

However, it lacks consideration of key factors like wind 

turbine hub height, blade rotation angle, solar panel tilt, and 

radiation type. 

• Probabilistic Method: 

This probabilistic algorithm sizes the hybrid energy 

system by accounting for wind speed variations and system 

component adjustments, affecting wind turbine power. 

While easy to use, it doesn't yield optimal results. For a 

PV/WT/biomass/battery system, it led to increased storage 

and component ratings, raising the total cost [47]. This 
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method is simple but doesn't maintain the hybrid system's 

dynamic performance. 

• Artificial Intelligence (AI) Methods: 

This advanced method controls, configures, and sizes 

hybrid energy system components by emulating tasks 

performed by the human mind [48,49], mine blast 

algorithm (MBA) [50], preference inspired co-evolutionary 

algorithm (PICEA) [51], Artificial bee swarm algorithm 

[52], Artificial neural network (ANN) [53], fuzzy logic [54] 

and Discrete Harmony Search (DHS) [55]. 

1.2.3 Sizing of hybrid energy system using metaheuristic 

algorithms 

After examining several types of size techniques, we 

discovered that no one could consistently deliver optimal 

solutions for the desired multi-objective function. As a 

result, metaheuristic algorithms have emerged as effective 

techniques over the past decade [56]. These algorithms 

surpass traditional software and deterministic methods in 

sizing hybrid renewable energy systems. The most effective 

approach, known as hybridization, integrates renewable 

energy sources, including solar PV, wind turbines, biomass, 

biogas, and tidal energy, with conventional energy sources 

such as diesel generators. Below, we will review artificial 

algorithms used for sizing PV/WT/DG/battery systems 

with different objective functions: 

In [57,58], Strength Pareto Evolutionary Algorithm 

(SPEA) optimized the size of a PV/WT/DG hybrid system, 

focusing on minimizing system costs and greenhouse gas 

emissions.  

In [59-61], Genetic Algorithm (GA) optimized a 

PV/WT/battery system, addressing objectives like 

maximizing reliability, minimizing lifecycle cost, and 

reducing power supply loss.  

In [62,63], Particle Swarm Optimization (PSO) was 

applied to size a PV/WT/DG/battery system under resource 

uncertainty. PSO was also used in [64] for a hybrid 

PV/WT/FC/electrolyzer/hydrogen storage system with 

wind uncertainty and reliability constraints.  

In [65], the Simulated Annealing Algorithm (SAA) 

optimized a PV/WT hybrid system, minimizing lifecycle 

cost.  

In [66], Response Surface Methodology (RSM) provided 

optimal sizing for a PV/WT/battery system with reduced 

power supply loss and fossil fuel consumption, comparing 

favorably to SAA.  

In [67], A combination of PSO and GA optimized 

mathematical models for hybrid systems. A comparison in 

[68] showed PSO's superiority in terms of convergence, 

speed, and accuracy. 

 

In [69,70], Multi-Objective PSO (MOPSO) optimized a 

PV/WT/FC/hydrogen system, improving energy cost, 

reliability, and minimizing outages, outperforming PSO.  

In [71], A combination of Sequential Monte Carlo 

Simulation (SMCS) and Pattern Search (PS) optimized a 

hybrid energy system, outperforming the GA-SMCS 

combination.  

In [72], the Cuckoo Search Algorithm (CS) optimized a 

PV/WT/DG/battery system, providing more accurate 

results than GA and PSO.  

In [73], the Multi-Objective Self-Adaptive Differential 

Evolution (MOSADE) algorithm optimized a 

PV/WT/DG/battery system, reducing processing time.  

In [74], the Artificial Bee Colony (ABC) algorithm 

optimized a PV/WT/battery system for energy cost and 

reliability.  

In [75], the Improved Arithmetic Optimization 

Algorithm (IAOA) optimized PV/WT/DG/battery and 

PV/DG/battery systems, minimizing total costs.  

In [76], Whale Optimization (WOA), Water Cycle 

Algorithm (WCA), and Moth-Flame Optimizer (MFO) 

were used for a PV/WT/DG/battery system, minimizing 

lifecycle costs while enhancing reliability and efficiency. 

1.3 Energy saving and reliability concepts 

In microgrids, the discrepancy between load demand and 

the available generation from different energy sources leads 

to higher energy costs. This is due to the need for extensive 

generation and distribution network expansions to meet 

load demands, often forcing energy sources to operate 

beyond their rated capacity during peak periods [77].  

Balancing load and generation is required to reduce these 

costs and avoid expensive installations [78]. Additionally, 

load demand curves should be flexible to reduce the burden 

on power generation equipment, ensure proper functioning 

of protective components, and minimize energy costs while 

preserving capacity for future expansion. In the first section, 

we will explore Demand Side Management (DSM) 

strategies. 

 System reliability, which reflects its strength, depends 

on the nature of energy sources and their response to 

internal faults or intermittent renewable sources like wind 

and solar. In the second section, we will discuss the concept 

of uncertainty, which is vital for determining optimal sizing. 

1.3.1 Demand side management Strategy 

DSM aims to match load demand with available 

generation to manage peak load periods. It includes 

methods like “peak clipping, valley filling, load shifting, 

energy conservation, load building, and flexible load shape” 

[79], as shown in Fig. 1 and explained below [80]: 
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Peak clipping: It is used when the microgrid capacity 

cannot meet peak load demand. This is done by turning off 

appliances or encouraging demand changes through higher 

energy prices during peak hours. 

Load Growth: This strategy aims to increase load when 

generation exceeds demand, helping maintain system 

stability, improve load-sharing, and enhance grid flexibility. 

It can be achieved by increasing electricity tariffs. 

Energy Efficiency: It is commonly called energy-saving. 

This strategy reduces energy demand by using efficient 

devices, switching off non-essential loads, or raising 

electricity tariffs, thus lowering load demand, and 

reshaping the load profile. 

Flexible Load Shape: It is also known as dynamic load 

management; this strategy adjusts the load based on 

available generation. It can be achieved by implementing 

dynamic electricity tariffs that fluctuate in price. 

Load shifting: Low-priority loads move from peak to off-

peak hours without altering the total energy consumption. 

For example, customers can store thermal heat or move 

tasks like laundry to off-peak times, improving load factor 

and avoiding peak periods. This is enabled by higher prices 

during peak hours and lower prices during off-peak hours. 

Valley filling: It aims to increase loads during off-peak 

hours when generation exceeds demand, enhancing average 

energy utilization. This is achieved by activating low 

priority loads or incentivizing customers to use energy 

during these times with reduced energy prices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Demand-side management strategies. 

1.3.2  Uncertainty analysis 

The intermittent nature of solar and wind energy creates 

uncertainty in Hybrid Renewable Energy Systems (HRES), 

presenting challenges for stand-alone systems' operation 

and performance in addition to their design [81-84]. Load 

consumption also contributes to this uncertainty. Effective 

long-term planning and real-time operation of microgrids 

depend on ensuring energy balance while maintaining 

sufficient reserves. Additionally, capital, operation, and 

maintenance costs are important factors in microgrid design 

and planning [85,86].  

To address uncertainties, microgrid designers 

incorporate reliable technologies such as backup diesel 

generators, energy storage systems (e.g., batteries and 

supercapacitors), demand-side management, and vehicle-

to-grid strategies. Properly accounting for these 

uncertainties during the planning stage helps system 

operators maintain power balance at the lowest cost, as 

operational flexibility may be limited. 

1.4 Contribution and paper organization 

Unlike many earlier studies that primarily aimed to 

minimize annual costs, this work adopts a more 

comprehensive approach by incorporating DSM, CC, LF 

and various uncertainties. Advanced metaheuristic 

optimization techniques are employed to improve the 

resilience and operational reliability of an isolated-grid RE 

system comprising PV panels, WT, DG, and battery storage. 

Moreover, this study stands out by examining system 

performance under fluctuating demand profiles and the 

inherent variability of renewable resources. The main 

contributions of this paper are as follows: 

1. Comprehensive system analysis using high-

performance metaheuristic algorithms to design an 

integrated RE system, demonstrating superior performance 

over commercial software and conventional methods. A 

detailed comparative evaluation of the applied techniques 

is presented. 

2. Development of a multi-objective optimization 

framework for sizing hybrid PV/WT/DG/battery systems. 

This framework minimizes COE, LPSP, and excess 

(dummy) energy, while maximizing system reliability and 

operational performance. 

3. A strategic methodology for achieving maximum 

power output and minimum energy cost in Hybrid 

Renewable Energy Systems (HRES). 

4. Integration of DSM, CC, and LF strategies to 

efficiently meet demand requirements while reducing 

component sizing and overall lifecycle costs. 

5. Utilization of solar radiation and wind speed datasets 

specific to New Minya, Egypt, derived from NASA and 20 

years of historical meteorological records. 

6. To the best of the authors’ knowledge, this is the first 

study to optimize HRES component sizing in a remote area 

using real-time and location-specific meteorological data. 
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2 Development of an IHRES 

The following stages explain a systematic approach that 

is necessary to implement an IHRES for isolated 

communities: 

2.1.  Identification of Study Area 

New Minya City, located in the Minya Governorate of 

Egypt, has been selected as the study area. It lies on the 

eastern bank of the Nile River, directly opposite Old Minya. 

The geographical location of New Minya within Egypt is 

shown in Fig. 2 It is located at a height of 123 meters above 

mean sea level, in latitude 28.0986° N and longitude 

30.8327° E. The city is 24.6 thousand acres in total, of 

which 6.5 thousand acres are built (residential areas, 

services, industry, tourist, and leisure, etc.). The utilities and 

infrastructure sector maintains four sanitation pumping 

plants with a daily capacity of 9.6 thousand. Additionally, 

the industry sector includes 59 factories that are currently 

in production and 68 factories that are under construction. 

The number of service buildings implemented by New 

Urban Communities’ Authorities (NUCA) is about 74 [3] as 

follows: 

• 19 educational buildings 

• 10 hospitals and centers 

• 11 commercial services             

• 6 nurseries    

• 5 mosques                                                              

•  9 social services 

•  11 public services 

•  1 communication center 

•  11 buildings by NUCA 

•  84 buildings by the private 

2.2. Visualization of Electrical Demand 

This study focuses on supplying electricity to the utilities 

and infrastructure sector of New Minya city, covering the 

residential, commercial, and industrial sectors across 6 

districts, club areas, build-your-own-house zones, roads, 

communications, and extended networks. It also includes a 

drinking water plant, a sanitation plant with 4 pumping 

stations, and the cultivation of green spaces and forestation. 

Figure 3 illustrates the hourly power demand profile over 

one year. The average load is approximately 22,500 kW, 

with a peak demand of 42,000 kW and a minimum load of 

7,000 kW. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2 The geographical location of New Minya City 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Hourly load power for New Minya city 

2.3 Assessment of natural resources 

Based on meteorological data, the mean annual wind speed 

in New Minya city is approximately 5.19 m/s at a height of 

10 meters (the level of the anemometer suspension), as 

illustrated in Fig. 4. 

Meteorological data shows the annual average solar energy 

curve for the selected site. Figure 5 depicts the 24-year 

average (1994-2018) used in the simulation, approximately 

6.05 kWh/m²/day. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The yearly average wind speed in New Minya city 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 The average yearly solar energy for New Minya City 

The annual average ambient temperature curve from 

meteorological data is shown in  Fig. 6. The simulation 

considered a 24-year average (1994–2018) with a mean 

temperature of 25.58ºC (78.04ºF). 
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Fig. 6 The hourly ambient temperature at the New Minya site 

3 Mathematical Modelling of the IHRES Components 

An accurate mathematical model of each component is 

essential to determine the optimal sizing of the Integrated 

Hybrid Renewable Energy System (IHRES). The proposed 

system includes solar PV modules, wind turbines (WTs), a 

diesel generator (DG) as a backup power source, and a 

battery bank. This configuration is particularly suitable for 

addressing electricity shortages in New Minya, Egypt. The 

IHRES architecture, shown in Fig. 7, consists of seven main 

components: solar PV modules, wind turbines, a diesel 

generator, a battery bank, a bidirectional power converter, a 

dump load, and the service load. 

 

 

 

 

 

 

 

 

Fig. 7 The IHRES's configuration 

3.1 Solar Energy System Model 

Various models for calculating PV output power are 

available in the literature. In this study, 𝑷𝐏𝐕(𝐭)  is 

estimated using a simplified model based on hourly solar 

𝐆(𝐭) [87] as in (1). 

𝑃PV(t) = 𝑁PV ∗ 𝑃𝑉panel_rating ∗ (
G(t)

𝐺ref
) ∗ [1

+   𝐾T ∗ (𝑇C − 𝑇ref)] 

(1) 

Where 𝑃𝑉panel_rating is the rated power of the PV panel, 

𝑁PV  is the number of PV panels, 𝐺ref  is the reference 

solar radiation (1000 W/m²), 𝐾T  is the temperature 

coefficient (3.7×10⁻³  1/°C), 𝑇C represents the average 

annual temperature (°C), and 𝑇ref is the PV cell 

temperature under Standard Test Conditions (STC) at 25°C. 

The average annual temperature of the cell can be 

calculated as in (2).   

𝑇𝐶(𝑡) = 𝑇𝑎𝑚𝑏 + [0.0256 ∗ 𝐺(𝑡)] (2) 

Where 𝑇𝑎𝑚𝑏   is the ambient temperature (°C) for the 

selected PV module. The energy generated 𝐸PV(t)  from 

PV panels is calculated as in (3) [87,88]. 

𝐸PV(t) = 𝑃PV(t) ∗ ∆𝑡 (3) 

Where ∆𝑡 denotes the time interval, corresponding to one 

hour. 

3.2 Wind Energy System Model 

Wind resources and a Wind Turbine's (WT) energy 

generation capacity at a location depend on hub height wind 

speed, WT speed characteristics, and land surface type. The 

wind speed at the desired hub height, relative to the 

anemometer height, can be calculated as in (4) [88]. 

𝑢(ℎ) = 𝑢(ℎ𝑎) (
ℎ

ℎ𝑎
)
𝛼

 (4) 

    Where u(ℎ) represents the wind speed at hub height 

(m/s), u(ℎ𝑎) is the measured wind speed (m/s), and 𝛼\alpha 

is the site-specific roughness factor. IEC standards [89] 

specify a friction coefficient of 0.20 for normal winds and 

0.11 for strong winds, with a value of (1/7) used in this 

paper. 

The formula for estimating the WT's mechanical power to 

the turbine is as in (5). 

𝑃𝑚𝑒𝑐ℎ = 
1

2
𝜌𝐴𝐶𝑝𝑢

3 (5) 

Where 𝐴 is the rotor swept area (m²), u is the wind speed 

(m/s), 𝐶𝑝 is the power coefficient, and 𝜌\rho is air density 

(kg/m³). The power coefficient 𝐶𝑝, or Betz's coefficient, is 

a function of the rotor tip-speed to wind speed ratio (𝜆 

\lambda), with a theoretical maximum of 0.593 [90]. 

𝜆 =  
𝜔𝑅

𝑢
 (6) 

Where 𝑅  is the radius of the wind turbine (m), and 𝜔 

(omega) is the angular velocity (rad/s).  

The power output at a constant wind speed is illustrated in 

Fig. 8. 
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Fig. 8 Wind turbine power characteristics 

The cut-in speed refers to the minimum wind speed at 

which a wind turbine begins generating electricity, while 

the cut-off speed is the maximum wind speed at which the 

turbine is shut down to prevent mechanical stress or damage. 

The rated power output is achieved within the range 

between these two thresholds, during which the turbine 

operates at its maximum capacity. 

Using the WT's normal power curve parameters, the 

estimated power PWT is given as in (7) [91, 92]. 

𝑃𝑊𝑇 = 0 (7.1) 

𝑃𝑊𝑇 =
𝑁𝑊𝑇 ∗ 𝜂𝑊𝑇 ∗ 𝑃𝑅𝑊𝑇 ∗ (𝑢

2(𝑡) − 𝑢2𝑐𝑢𝑡−𝑖𝑛)

𝑢2𝑟𝑎𝑡𝑒𝑑 − 𝑢
2
𝑐𝑢𝑡−𝑖𝑛

 (7.2) 

𝑃𝑊𝑇  =  𝑁𝑊𝑇 ∗ 𝜂𝑊𝑇 ∗ 𝑃𝑅𝑊𝑇  (7.3) 

Where NWT is the number of WTs, 𝑢𝑐𝑢𝑡−𝑖𝑛   is the cut-in 

speed(m/s), 𝑢𝑟𝑎𝑡𝑒𝑑 is the rated speed(m/s), 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓is the 

cut-off speed(m/s), and 𝑃𝑅_𝑊𝑇   is the rated output 

power(kW). 

The wind energy capacity at a location can be estimated 

using the Weibull distribution to analyze wind speed data. 

Various methods exist for calculating the Weibull 

parameters k and c. The probability density function for 

wind speed (u) in a two-parameter distribution is as in (8) 

[93]. 

𝑓(𝑢) =  
𝑘

𝑐
∗ (
𝑘

𝑐
)
𝑘−1

∗ 𝑒𝑥𝑝 [− (
𝑢

𝑐
)
𝑘

]  

𝑤ℎ𝑒𝑟𝑒, (𝑘 ˃0, 𝑢 ˃0, 𝑐 ˃ 0) 

(8) 

Where 𝑘  is the shape parameter and 𝑐  is the scale 

parameter, the cumulative distribution function (u) can be 

determined using (9). 

𝐹(𝑢) = 1 − 𝑒𝑥𝑝 [− (
𝑢

𝑐
)
𝑘

] (9) 

The following formulas are the Weibull parameters' final 

results:  

𝑘 = 𝑎         𝑎𝑛𝑑        𝑐 = (−
𝑏

𝑘
) (10) 

Where parameters 𝑎 and 𝑏 can be estimated, respectively, 

as follows [88]: 

𝑎 = (∑(𝑥𝑖 − 𝑥̅) ∗  ∑(𝑦𝑖 − 𝑦̅))/(∑(𝑥𝑖 − 𝑥̅)
2)

𝑤

𝑖=1

𝑤

𝑖=1

𝑤

𝑖=1

 (11) 

𝑏 = 𝑦̅
𝑖
− 𝑎𝑥𝑖 = (

1

𝑤
∑𝑦𝑖 − 

𝑎

𝑤
∑𝑥𝑖)

𝑤

𝑖=1

𝑤

𝑖=1

 (12) 

𝑦𝑖 = 𝑙𝑛 (−𝑙𝑛(1 − 𝐹(𝑢𝑖)))       𝑎𝑛𝑑     𝑥𝑖 = ln (𝑢𝑖) (13) 

Where 𝑤  is the number of non-zero wind speeds, 𝑢𝑖  is 

the wind speed (m/s) at time step 𝑖 , and 𝑥𝑖  and 𝑦𝑖  's 

average values are 𝑥̅ and 𝑦̅ , respectively. 

This formula calculates the capacity factor (𝐶𝐹) at a specific 

location as follows [90]: 

𝐶𝐹 = 
𝑒𝑥𝑝 [−(

𝑢𝑐𝑢𝑡−𝑖𝑛
𝑐
)
𝑘

] − 𝑒𝑥𝑝 [−(
𝑢𝑟𝑎𝑡𝑒𝑑
𝑐
)
𝑘

]

(
𝑢𝑟𝑎𝑡𝑒𝑑
𝑐
)
𝑘

− (
𝑢𝑐𝑢𝑡−𝑖𝑛
𝑐
)
𝑘  −𝑒𝑥𝑝 [−(

𝑢𝑐𝑢𝑡−𝑜𝑓𝑓

𝑐
)
𝑘

] (14) 

The energy produced from WT panels (𝐸𝑊𝑇) is calculated 

as follows: 

𝐸𝑊𝑇(𝑡) = 𝐶𝐹 ∗ 𝑃𝑊𝑇(𝑡) ∗ ∆𝑡 (15) 

Where ∆𝑡 represents the time interval and is equivalent to 

one hour. 

3.3 Battery Storage System Model 

The battery bank provides power during periods of high 

load demand or when renewable energy resources are 

unavailable, while also storing surplus energy generated. 

The stored energy at hour ' t + 1' is given by the following 

formulae [87, 94]: 

𝐸Bat(t + 1) = (1 −  𝜎) ∗ 𝐸Bat(t) + (𝑃Gen(t) −
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
)

∗ ∆𝑡 ∗ 𝜂𝐶𝐶 ∗ 𝜂𝐵𝐶 

(16) 

When RE resources can't meet the load during discharge, 

the battery bank covers the shortfall, as follows [93]: 

𝐸Bat(t + 1) = (1 −  𝜎) ∗ 𝐸Bat(t)

− ((
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
− 𝑃Gen(t)) / 𝜂𝐵𝐷) ∗ ∆𝑡 

(17) 

Where 𝑃𝐿𝑜𝑎𝑑(𝑡) represents the hourly electrical demand at 

time∆𝑡, 𝑃Gen(t) is the generated power, and 𝜎 is the self-

discharge rate (0.2%/day) [59]. Charging and discharging 

efficiencies ( 𝜂𝐵𝐶  , 𝜂𝐵𝐷 ) are 90% and 85% [95], and 

converter efficiency (𝜂𝐶𝑜𝑛𝑣 ) is 95% [96].The amount of 

power produced by the RE resources, 𝑃𝐺𝑒𝑛(𝑡)  is 
calculated as in (18). 

𝑃𝐺𝑒𝑛(𝑡)  = [𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡)] ∗ 𝜂𝐶𝑜𝑛𝑣  (18) 

3.4 Diesel Generator Backup System Model 

DGs support isolated grids when RE sources are 

insufficient or fail to meet the demand, or low battery levels. 

Hourly fuel consumption (𝐹𝐷𝐺) is calculated using a linear 

relationship based on the load demand [87]. 

(7.1) IF 𝑢(𝑡) < 𝑢𝑐𝑢𝑡−𝑖𝑛 OR 𝑢(𝑡) > 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓 

(7.2) IF 𝑢𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑟𝑎𝑡𝑒𝑑 

(7.3) IF 𝑢𝑟𝑎𝑡𝑒𝑑 < 𝑢(𝑡) ≤ 𝑢𝑐𝑢𝑡−𝑜𝑓𝑓 
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𝐹𝐷𝐺(𝑡)  = [𝑎𝐷𝐺 ∗ 𝑃𝐷𝐺_𝐺𝑒𝑛(𝑡)

+ 𝑏𝐷𝐺 ∗  𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔]  (𝑙/ℎ) 
(19) 

Where 𝑎𝐷𝐺 = 0.246 (l/kWh) and 𝑏𝐷𝐺 = 0.08145 (l/kWh) 

define the DG fuel curve [58, 97]. 𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔  is the rated 

power, and 𝑃𝐷𝐺_𝐺𝑒𝑛(𝑡)is the hourly generated power. The 

following formula is used to determine the Diesel 

Generator’s (DG) Annual Fuel Consumption (AFC):  

𝐴𝐹𝐶 = ∑ 𝐹𝐷𝐺(𝑡)

8760

𝑡=1

 (20) 

3.4.1 CO2 Emissions  

According to estimates, DG's hourly fuel usage and 𝐶𝑂2 
emissions may be estimated as follows [98]:  

𝐶𝑂2(𝑡)  = 𝑆𝐸𝐶𝑂2(𝑘𝑔/𝑙)  ∗  𝐹𝐷𝐺(𝑡) (𝑙ℎ) (21) 

Where the specific 𝐶𝑂2  emissions per liter of diesel are 

represented by 𝑆𝐸𝐶𝑂2 , and its value is 2.7 𝑘𝑔/𝑙. 

The following is an estimation of the DG's yearly 𝐶𝑂2 
emissions: 

𝐴𝑛𝑛𝑢𝑎𝑙𝐶𝑂2_𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  ∑ 𝐶𝑂2(𝑡)

8760

𝑡=1

 (22) 

3.5 Model of the Bidirectional or Dual Converter with 

Charger Controller (BDC-CC) 

The BDC-CC operates as an inverter (DC to AC) or rectifier 

(AC to DC), preventing battery overcharge or deep 

discharge. Its power rating (𝑃𝐵𝐷𝐶−𝐶𝐶) is determined using 

the following formulas based on mode [87]. If 𝑃𝑊𝑇(𝑡) > 

𝑃𝐿𝑜𝑎𝑑(𝑡) , or 𝑃𝑊𝑇(𝑡)  + 𝑃𝑃𝑉(𝑡)    𝑃𝐿𝑜𝑎𝑑(𝑡) , and 

𝐸Bat(t) < 𝐸Bat_max, the converter charges the battery. The 

BDC-CC size is estimated as follows: 

𝑃𝐵𝐷𝐶−𝐶𝐶(𝑡) = [𝑃𝑊𝑇(𝑡) − 𝑃𝐿𝑜𝑎𝑑(𝑡)] ∗  𝜂𝐶𝑜𝑛𝑣 (23) 

• If 𝑃𝑊𝑇(𝑡)  < 𝑃𝐿𝑜𝑎𝑑(𝑡) , or 𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) >
𝑃𝐿𝑜𝑎𝑑(𝑡)  and 𝐸Bat(t) < 𝐸Bat_max , the battery 

charges. If 𝐸Bat(t) = 𝐸Bat_max , surplus power 

flows to the dump load. The BDC-CC size is 
estimated as follows: 

𝑃𝐵𝐷𝐶−𝐶𝐶(𝑡)  = [𝑃𝑃𝑉(𝑡) − 𝑃𝐵𝐶(𝑡)] ∗ 𝜂𝐶𝑜𝑛𝑣 (24) 

• If 𝑃𝑊𝑇(𝑡) + 𝑃𝑃𝑉(𝑡) < 𝑃𝐿𝑜𝑎𝑑(𝑡)  and 𝐸Bat(t) >
𝐸Bat_min , the battery discharges via the converter to 

meet the load. The BDC-CC size is estimated as 
follows: 

𝑃𝐵𝐷𝐶−𝐶𝐶(𝑡)  = [𝑃𝑃𝑉(𝑡) + 𝑃𝐵𝐷(𝑡)] ∗ 𝜂𝐶𝑜𝑛𝑣 
(25) 

Based on simulation results, the PWM converter rating is 

determined using the above formulas [99]. 

4  Energy Management Strategies 

Energy management is essential for IHRES sizing and 

optimization. This study proposes a method for managing 

energy in a PV/WTs/DG/battery IHRES, aiming to size 

components optimally to meet load demand within LPSP 

limits and handle dump energy (𝐸𝐷𝑢𝑚𝑝 ) to reduce 𝐶𝑂𝐸 . 

The approach evaluates hourly energy balance over the year. 

Figure 9 shows the EMS flowcharts for operating modes, 

which are described as follows: 

• Mode 1: In this operational mode, the battery bank’s 
energy level at ‘t+1’ matches the energy level of the 
previous hour, and the system’s total net power 
delivered is zero. While switches S4, S5, and S6 are 
open, switches S1, S2, and S3 are closed. This mode of 
operation is depicted clearly in Fig. 10(a). There will 
be no power outage, and the expected load demand will 
be met. 

• Mode 2: In this operational mode, the RE resources first 
meet the load demand before storing any excess energy 
generated in the battery bank. This is only applicable if 
the battery bank’s energy levels are within the 
minimum and maximum range, i.e., ( 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛  ≤
 𝐸𝐵𝑎𝑡(𝑡)  ≤  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 ). While switches S4 and S5 

remain open, switches S1, S2, and S3 are closed. This 
operational mode is visually depicted in Fig. 10(b). 
There will be no power outage, and the expected load 
demand will be fulfilled. 

• Mode 3: In this operational mode, the energy from the 
RE resources first satisfies the load demand. If the 
battery bank’s energy level reaches its maximum limit, 
(𝑖𝑓 ( 𝐸𝐵𝑎𝑡(𝑡) =  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥  ), then the dump load is 

operated using the extra energy. Where switches S2 
and S4 are open, while switches S1, S3, and S5 are 
closed, as shown in Fig. 10(c). There will be no power 
outage, and the expected load demand will be met. 

• Mode 4: In this mode of operation, the battery bank 
supplies the shortfall in load demand when the energy 
generated by the RE sources is insufficient This 
condition is met when. ( 𝐸𝐵𝑎𝑡(𝑡) ≥  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 ). 

Switches S1, S2, and S3 are closed, while switches S4 
and S5 are open, as illustrated in Fig. 10(d). During 
this mode of operation, the expected demand will be 
met, and there will be no power outage. 

• Mode 5: In this mode of operation, there is not enough 
energy to match the load demand from the battery bank 
and RE resources. The DG will then be activated to 
supply the unmet portion of the load if (𝐸𝐵𝑎𝑡(𝑡) ≤
 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛 ). As soon as the RE resources start to 

generate enough electricity to fulfill the demands of the 
entire load, the DG stops. Switches S1, S3, and S4 are 
closed, while switches S2 and S5 are open, as shown in 
Fig. 10(e). The battery bank remains in its previous 
state. The expected load demand will be met, and there 
will be no power outage. 

• Mode 6: In this mode of operation, there will be a power 
outage at time 't' because the battery bank's energy 
level is below the recommended minimum, and the 
energy supplied by the RE resources is insufficient to 
meet the required load demand, i.e. 𝐸𝐵𝑎𝑡(𝑡) =
 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛 , but the DG will operate at its maximum 

capacity as possible as it can. as illustrated in Fig. 10(f). 
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Fig. 9 Flowchart of the EMS operating modes and LPSP acquisition using LF and CC strategies 

 

 

  

 

 

Fig. 10(a) Fig. 10(b) 

  

Fig. 10(c) Fig. 10(d) 

 
 

Fig. 10(e) Fig. 10(f) 

Fig. 10 Operational modes of the IHRES using LF and CC strategies 
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5 Optimization 

5.1 Economic Assessment of the Off-Grid IHRES 

The economic sustainability of the IHRES is evaluated 

using methods such as net present cost, annual levelized 

cost, LCC, and payback period. LCC, which reflects the 

project’s total costs over its life cycle, is employed for the 

economic analysis. This study calculates LCC by summing 

costs for system components, replacement, erection, capital, 

O&M, and fuel [100]. COE, a key economic indicator for 

IHRES, is computed as follows [75]: 

𝐶𝑂𝐸 = 
𝐿𝐶𝐶 ∗ 𝐶𝑅𝐹(𝑖, 𝑇)

∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)
8760
𝑡=1

 (26) 

Where 𝑇 is the project lifespan (25 years), 𝑖 is the real net 

interest rate, and 𝐶𝑅𝐹  is the capital recovery factor, 

calculated as follows [59]: 

𝐶𝑅𝐹(𝑖, 𝑇) =  
𝑖 ∗ (1 + 𝑖)𝑇

(1 + 𝑖)𝑇 − 1
 (27) 

The discount rate is computed by applying the following 

formula [79]. 

𝑦 =  
𝑖𝑛𝑜𝑚 − 𝑓

1 + 𝑓
 (28) 

Where 𝑖𝑛𝑜𝑚 is the yearly nominal interest rate (8.25% in 

this study [101] and 𝑓  is the yearly inflation rate (4.9% 

[102]). 

The life cycle cost (𝐶𝐿𝑖𝑓𝑒_𝐶𝑦𝑐𝑙𝑒)  of the overall project can 

be estimated by using the following formula: 

𝐿𝐶𝐶 = 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙  +  𝐶𝑂&𝑀 + 𝐶𝑅𝑒𝑝  +  𝐶𝐹𝑢𝑒𝑙  

− 𝑉𝑆𝑐𝑎𝑟𝑝 
(29) 

Where 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙   is the initial cost, 𝐶𝑂&𝑀  is the 

operation and maintenance cost, 𝐶𝑅𝑒𝑝 is the replacement 

cost, 𝐶𝐹𝑢𝑒𝑙  is the fuel cost, and 𝑉𝑆𝑐𝑎𝑟𝑝 is the scrap value 

of each IHRES component. 

Costs: Installation, civil work, electrical testing, and 

commissioning are part of 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙 . Installation and 

civil works make up 20% of WT system costs and 40% of 

solar system costs, respectively [100]. 𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙  can 

be estimated as follows: 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙  = 𝐶WT ∗ 𝑃𝑅𝑊𝑇 ∗ 𝑁WT + 𝐶𝑃𝑉 ∗

  𝑃𝑉𝑝𝑎𝑛𝑒𝑙_𝑟𝑎𝑡𝑖𝑛𝑔 ∗  𝑁PV + 𝐶Bat ∗ 𝑆𝐵𝑎𝑡𝑟𝑎𝑡𝑖𝑛𝑔 ∗

 𝑁Bat + 𝐶DG ∗                         𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔 ∗ 𝑁DG +

𝐶BDC−CC ∗ 𝑃𝐵𝐷𝐶−𝐶𝐶               

(30) 

Where 𝐶WT  is the cost of WT with civil works ($/kW), 

𝑃𝑅𝑊𝑇 is the rated WT output power, 𝑁WT is the number of 

WTs, 𝐶𝑃𝑉is the cost of PV panels with civil works ($/kW), 

𝑃𝑉𝑝𝑎𝑛𝑒𝑙_𝑟𝑎𝑡𝑖𝑛𝑔is the rated PV power, 𝑁PV is the number of 

PV panels, C_Bat is the cost of batteries ($/kW), 𝑆𝐵𝑎𝑡𝑟𝑎𝑡𝑖𝑛𝑔 

is the battery bank rating,  𝑁Bat is the number of battery 

cells, 𝐶DG is the DG system cost, 𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔 is the DG's 

rated power, and 𝑁DG is the number of DGs. 

𝐶𝑂&𝑀 values, based on analysis from studies [101-104], are 

estimated and can be calculated using the following 

formula [105]: 

𝐶𝑂&𝑀 = ∑𝐶𝑂&𝑀(1)

𝑇

𝑗=1

∗ (
1

(1 + 𝑖)𝑗
) (31) 

Where 𝐶𝑂&𝑀(1)  is the project's first year operating and 

maintenance costs. There is another formula which can be 

expressed as: 

𝐶𝑂&𝑀 = 𝐶𝑂&𝑀_WT ∗ 𝑇WT +  𝐶𝑂&𝑀_PV ∗ 𝑇PV
+ 𝐶𝑂&𝑀_Bat ∗  𝑇Bat + 𝐶𝑂&𝑀_𝐷𝐺
∗ 𝑇𝐷𝐺 + 𝐶𝑂&𝑀_𝐵𝐷𝐶−𝐶𝐶 ∗ 𝑇𝐵𝐷𝐶−𝐶𝐶  

(32) 

Where, 𝐶𝑂&𝑀_WT , 𝐶𝑂&𝑀_PV , 𝐶𝑂&𝑀_Bat , 𝐶𝑂&𝑀_𝐷𝐺 , and 

𝐶𝑂&𝑀_𝐵𝐷𝐶−𝐶𝐶 are the maintenance and operation costs for 

WTs, PV panels, battery storage, DGs, and bidirectional 

converters, respectively. 𝑇WT , 𝑇PV , 𝑇Bat , 𝑇𝐷𝐺  , and 

𝑇𝐵𝐷𝐶−𝐶𝐶  are their corresponding operating times. 

The formula below calculates the present value of the 

replacement cost of hybrid system components, 𝐶𝑅𝑒𝑝, over 

the system's lifespan [101]: 

𝐶𝑅𝑒𝑝 = ∑ [𝐾𝑅𝑒𝑝

𝑁𝑅𝑒𝑝

𝑗=1

∗ 𝐶𝑢 ∗ (
1

(1 + 𝑖)
)
(𝑇∗

𝑗
𝑁𝑅𝑒𝑝+1

)

] (33) 

Where 𝐾𝑅𝑒𝑝 , 𝐶𝑢 , and 𝑁𝑅𝑒𝑝  are the replacement 

component capacity (kw for WTs, PV panels, DGs, and 

bidirectional converters; kWh for batteries), replacement 

costs ($/kw for WTs, PV panels, DGs, and bidirectional 

converters; $/kWh for batteries), and the number of 

replacements over the project’s lifespan TTT, respectively. 

The fuel cost of 𝐶𝐹𝑢𝑒𝑙 , can be calculated from the following 

formula [103]: 

 𝐶𝐹𝑢𝑒𝑙  = (∑ 𝐹𝐷𝐺(𝑡)

8760

𝑡=1

) ∗ 𝑃𝐹𝑢𝑒𝑙 (34) 

Where ∑ 𝐹𝐷𝐺(𝑡)
8760
𝑡=1  is DG’s annual fuel consumption (l), 

and 𝑃𝐹𝑢𝑒𝑙  is the fuel price assumed to be 0.8 $/l. 

The following formula can be used to determine the 

𝑉𝑆𝑐𝑎𝑟𝑝 : 

𝑉𝑆𝑐𝑎𝑟𝑝 = ∑ [

𝑁𝑅𝑒𝑝+1

𝑗=1

𝑆𝑉 (
1

(1 + 𝑖)
)
(𝑇∗

𝑗
𝑁𝑅𝑒𝑝+1

)

] (35) 

Where 𝑆𝑉 is the scrap value of the project components. 

5.2 System Reliability Model 

Reliability is defined as the ability of the system to deliver 

continuous and adequate power to meet load requirements 
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over time. In this study, the reliability of the IHRES is 

assessed using 𝐿𝑃𝑆𝑃 , based on outage hours and total 

demand. 𝐿𝑃𝑆𝑃 at hour 't' is calculated as follows [106]: 

𝐿𝑃𝑆(t) =
𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
− 𝑃𝐺𝑒𝑛(𝑡)

− [(1 − 𝜎) ∗ 𝐸Bat(t + 1)
− 𝐸Bat(t)] ∗ 𝜂𝐵𝐷 

(36) 

The LPSP is calculated as follows [134]: 

𝐿𝑃𝑆𝑃 =
∑ 𝐿𝑃𝑆(t)8760
𝑡=1

∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)
8760
𝑡=1

 (37) 

5.3 System uncertainty model             

This design considers 𝑣𝑖(𝑡) , representing wind speed 

fluctuations over 8760 hours, based on historical data. To 

address uncertainty, both deterministic and stochastic 

models are used, with the focus on stochastic uncertainty, 

where variations are modeled by probability distributions 

[41]. 

Probability distributions capture changes in time-dependent 

parameters for stochastic uncertainty. Discrete samples 

𝜉(µ, 𝜎) , with mean (µ ) and variance (𝜎 ), are selected to 

represent continuous functions. These samples are assigned 

𝑣𝑖(𝑡) values and converted to uncertain factors 𝜀(𝑡) using 

the following procedure: 

𝜀(𝑡) = 𝑣𝑖(𝑡) + 𝜉(µ, 𝜎) (38) 

The average and standard deviation of wind forecast errors 

for 'n' occurrences are found in the above equation as 

follows [84]: 

µ =
1

𝑛
∑𝑒𝑖    

𝑛

𝑖=1

 (39) 

𝜎 = √
1

𝑛 − 1
∑ (𝑒𝑖 − µ)

2

𝑛

𝑖=1

 (40) 

5.4 Objective function 

The objective function minimizes the system's energy cost, 

determined by the formula below. Costs depend on key 

variables like 𝑁WT, 𝑁PV,  𝑁Bat, and DG rating, subject to 

system constraints. The model is nonlinear, based on the 

previous techno-economic model, and will be analyzed 

using a metaheuristic algorithm. The objective function is 

expressed as follows [99]:  

  𝑚𝑖𝑛 𝐶𝑂𝐸(𝑁𝑊𝑇 , 𝑁𝑃𝑉 , 𝑁𝐵𝑎𝑡)

= ∑ (𝐿𝐶𝐶)𝑐

𝑚𝑖𝑛

𝐶=𝑊𝑇,𝑃𝑉,𝐵𝐴𝑇,𝐷𝐺,𝐵𝐷𝐶−𝐶𝐶

 
(41) 

5.4.1 UPPER AND LOWER BOUNDS 

This study assumes PV arrays and WTs are the primary 

energy sources. When there’s excess energy, the battery 

charges; when there is a deficit, the battery discharges (if 

charged). Thus, wind, solar PV, and the battery bank are 

subject to the following constraints [87]: 

𝑁𝑊𝑇_𝑚𝑖𝑛  ≤  𝑁𝑊𝑇  ≤ 𝑁𝑊𝑇_𝑚𝑎𝑥 (42) 

𝑁𝑃𝑉_𝑚𝑖𝑛  ≤  𝑁𝑃𝑉  ≤  𝑁𝑃𝑉_𝑚𝑎𝑥 (43) 

𝑁𝐵𝑎𝑡_𝑚𝑖𝑛  ≤  𝑁𝐵𝑎𝑡  ≤  𝑁𝐵𝑎𝑡_𝑚𝑎𝑥 (44) 

Where 𝑁𝑊𝑇, 𝑁𝑃𝑉, and 𝑁𝐵𝑎𝑡  are the number of WTs, PV 

panels, and battery cells, respectively. 

5.4.2 Battery bank storage system limits 

The following limits determine the amount of energy that is 

stored in the battery bank at any particular time "t" [94]:  

𝐸𝐵𝑎𝑡_𝑚𝑖𝑛  ≤  𝐸𝐵𝑎𝑡(𝑡)  ≤  𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 (45) 

Where 𝐸𝐵𝑎𝑡_𝑚𝑎𝑥   and 𝐸𝐵𝑎𝑡_𝑚𝑖𝑛  are the maximum and 

minimum battery storage levels, calculated as follows: 

𝐸𝐵𝑎𝑡_𝑚𝑎𝑥 = (
𝑁𝐵𝑎𝑡  ×  𝑉𝐵𝑎𝑡  ×  𝐾𝐵𝑎𝑡

1000
)

∗  𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑎𝑥  
(46) 

𝐸𝐵𝑎𝑡_𝑚𝑖𝑛 = (
𝑁𝐵𝑎𝑡  ×  𝑉𝐵𝑎𝑡  ×  𝐾𝐵𝑎𝑡

1000
)

∗  𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛 
(47) 

   Where 𝑉𝐵𝑎𝑡   and 𝐾𝐵𝑎𝑡  are the battery voltage and 

rated capacity (Ah), and 𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛   and 𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑎𝑥  

are the minimum and maximum states of charge, calculated 

as follows [94]: 

𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛 = 1 − 𝐷𝑂𝐷 (48) 

𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑎𝑥 = 𝑆𝑂𝐶𝐵𝑎𝑡_𝑚𝑖𝑛 − 𝐷𝑂𝐷  (49) 

Where DOD is the battery's depth of discharge, and Fig. 11 

shows the relationship between lead-acid battery life cycle 

and DOD. 

 

 

 

 

 

 

 

Fig. 11 The typical lifecycle of RS lead acid-SSIG batteries versus DOD 

5.4.3 Operating limits of the diesel generator 

The DG efficiency improves at higher loads; thus, 25% of 

its rated capacity is the minimum operating threshold used 

in this paper. It operates only when the following conditions 

are satisfied [31]: 
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𝑃𝐿𝑜𝑎𝑑(𝑡)

𝜂𝐶𝑜𝑛𝑣
 ≤  25% 𝑜𝑓  𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔 ∗ ∆t  (50) 

Where 𝑃𝐿𝑜𝑎𝑑(𝑡) is the hourly load, 𝜂𝐶𝑜𝑛𝑣is the converter 

efficiency, 𝑃𝐷𝐺_𝑟𝑎𝑡𝑖𝑛𝑔  is DG rated power, and ∆t  is the 

simulation time interval. 

5.4.4 Loss of power supply and dump energy limits 

𝐿𝑃𝑆𝑃  and dump energy (𝐸𝐷𝑢𝑚𝑝 ) are key indicators of 

system reliability. The optimization tracks these values to 

meet defined limits and minimize 𝐶𝑂𝐸. In this study, the 

allowed limits for 𝐿𝑃𝑆𝑃  and 𝐸𝐷𝑢𝑚𝑝 are set as follows 

[102]: 

𝐿𝑃𝑆𝑃 ≤  5% 𝑜𝑓  𝐴𝐷𝐿 (51) 

𝐸𝐷𝑢𝑚𝑝  ≤  4% 𝑜𝑓  𝐴𝐷𝐿 (52) 

Where 𝐴𝐷𝐿 is the total annual demand load calculated as 

follows: 

   𝐴𝐷𝐿 = ∑ 𝑃𝐿𝑜𝑎𝑑(𝑡)

8760

𝑡=1

  (53) 

5.5 The Suggested Algorithm 

The study utilizes the Salp Swarm Algorithm (SSA), a 

metaheuristic method recognized for its ability to identify 

global optima in complex problems. SSA is inspired by salp 

swarm behavior, as introduced in [107]. 

Salps are small, barrel-shaped, jellyfish-like creatures.  
Fig. 12(a) shows their structure, while Fig. 12(b) illustrates 

how they form chains in swarms to search for food. 

 

 

 

 

Fig. 12 (a) Salp and (b) Salp Swarm Chain 

5.5.1 The Salp swarm algorithm (SSA) 

In the mathematical model of the salp chain, the population 

is divided into two groups: a leader and followers. The 

leader, located at the front, directs the swarm. Like other 

swarm-based algorithms, salps are positioned in an n-

dimensional search space, where n is the number of 

objective variables. Their positions are stored in a two-

dimensional matrix 'Z', and the swarm aims to reach the 

food source 'f'. The leader’s position is updated as follows 

[76]: 

 𝑍𝑞
1 = {  

𝑓𝑞 + [𝑐1 ∗ (( 𝑢𝑙𝑞 − 𝑙𝑙𝑞) ∗ 𝑐2 + 𝑙𝑙𝑞)]𝑐3 ≥ 0

           

𝑓𝑞 − [𝑐1 ∗ (( 𝑢𝑙𝑞 − 𝑙𝑙𝑞) ∗ 𝑐2 + 𝑙𝑙𝑞)] 𝑐3 < 0

   (54) 

Where 𝑍𝑞
1 indicates the position of the leader salp in the 

𝑞𝑡ℎ  dimension. The lower and upper bounds of the 𝑞𝑡ℎ 

dimension are denoted by 𝑙𝑙𝑞   and 𝑢𝑙𝑞 . 𝑐1 , 𝑐2  and 𝑐3 

are random numbers. 

The leader modifies its position in response to the food 

source. Coefficient 𝑐1, shown below, is crucial for 

balancing exploration and exploitation in SSA.  

         𝑐1 =  2𝑒
−(
4𝑢
𝑈
)
2

  (55) 

Where 𝑢 and 𝑈 are the maximum and current numbers of 

iterations, respectively. 

Random integers 𝑐2 and 𝑐3  are generated in the [0,1] 

interval, determining the step size and direction (positive or 

negative) for the next position in the 𝑞𝑡ℎ dimension. The 

followers' positions are updated using the following 

formula based on Newton’s law of motion [94]:    

𝑍𝑞
𝑖 =
1

2
𝑎𝑡2 + 𝑉0𝑡 (56) 

Where 𝑉0 is the initial speed, 𝑡 is the time interval, and 

𝑖 ≥ 2 indicates that 𝑍𝑞
𝑖  is the position of the 𝑖𝑡ℎ follower 

salp in the 𝑞𝑡ℎ dimension and 𝑎 is the acceleration rate 

and equals 𝑎 =
𝑉𝑓𝑖𝑛𝑎𝑙

𝑡
 where 𝑉𝑓𝑖𝑛𝑎𝑙 =

𝑍−𝑍0

𝑡
. An iteration is 

defined as a time ‘𝑡’; the difference between two iterations 

is regarded as 1, and if 𝑉0 = 0, 𝑍𝑞
𝑖  is defined as follows 

[105]: 

𝑍𝑞
𝑖 =
1

2
∗ (𝑍𝑞

𝑖 + 𝑍𝑞
𝑖−1) (57) 

Where  𝑍𝑞
𝑖    indicates the position of the 𝑖𝑡ℎ  follower 

salp in the 𝑞𝑡ℎ dimension when 𝑖 ≥ 2. The salp chains are 

simulated using the previous formula. 

SSA offers benefits like simplicity, ease of implementation, 

and high efficiency. It rapidly solves optimization problems 

to find global optimum values. The SSA process for 

determining the ideal IHRES size with the lowest 𝐶𝑂𝐸 , 

using the most economical WTs and meeting 𝐿𝑃𝑆𝑃  and 

𝐸𝐷𝑢𝑚𝑝  limits, is detailed. Input data for the program is 

shown in the flowchart in Fig. 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Flowchart depicting the procedure for determining the optimal 

IHRES sizing using SSA 
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6 Results and Discussion 

The optimal sizing of an off-grid IHRES was assessed 
for New Minya City. The site experiences an average wind 
speed of 5.19 m/s at a height of 10 meters and receives an 
average daily solar radiation of 6.05 kWh/m²/day. Table 1 
and Table 2 present the technical specifications of ten wind 
turbines from various manufacturers, along with the 
parameters related to the load profile, PV system, battery 
storage, and diesel generator. The designed system is 
evaluated over a 25-year operational lifespan. 

The simulation results were generated using MATLAB. 
As previously mentioned, the control parameters and 
constraints for the optimized variables were established. The 
sensitivity analysis was conducted on two key 
computational parameters of the Salp Swarm Algorithm 
(SSA): the number of search agents (population size) and the 
number of iterations. The population size varied between 10, 
20, 30, and 50 agents, while the number of iterations was 
evaluated at 50, 100, and 150.  

Results showed that increasing the population size led to 
better convergence and slightly improved the objective 
function (COE), but with increased computational time. A 
population size of 30 agents and 100 iterations provided the 
best trade-off, offering a minimum COE with acceptable 
computational effort. Further increases beyond 100 
iterations resulted in marginal improvement due to 
convergence saturation. 

Table 3 outlines the economic parameters associated with 

each HRES component. It includes details on 

𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝐶𝑎𝑝𝑖𝑡𝑎𝑙 , 𝐶𝑂&𝑀, 𝐶𝑅𝑒𝑝, 𝐶𝐹𝑢𝑒𝑙 , and 𝑉𝑆𝑐𝑎𝑟𝑝, as well as 

the expected useful life of the components. 

6.1 Optimal combination of system components 

This study utilizes the SSA method, implemented in 

MATLAB, to determine the optimal sizing of a microgrid 

for a remote site in Egypt’s New Minya Governorate. The 

system configuration includes (i) wind turbines (WTs), (ii) 

photovoltaic (PV) modules, (iii) battery banks, and (iv) 

diesel generator (DG) units, all selected to satisfy the site's 

load requirements. 

To reduce dependence on DGs and lower the 𝐶𝑂𝐸, while 

ensuring high reliability and performance, a stepwise DSM 

strategy is applied. This operational approach for the 

microgrid is illustrated in Fig. 14. 

Figure 15 illustrates the variation in the Cost of Energy 

(𝐶𝑂𝐸) across different optimization algorithms applied to 

the WT5 configuration. Among all tested methods, the Salp 

Swarm Algorithm (SSA) achieved the lowest 𝐶𝑂𝐸 value 

of 0.21957 $/kWh, outperforming other algorithms such as 

DA, GRO, ALO, PSO, MFO, and WOA. This superior 

performance is attributed to SSA's strong global search 

capability and fast convergence. Notably, WOA resulted in 

the highest 𝐶𝑂𝐸  value (0.22717 $/kWh), indicating less 

optimal sizing decisions.  

The figure clearly highlights the advantage of SSA in 

minimizing 𝐶𝑂𝐸  for isolated hybrid renewable systems. 

Table 4 provides a detailed quantitative comparison of SSA 

against seven other metaheuristic algorithms in terms of 

𝐶𝑂𝐸, number of iterations to convergence, and fuel cost. As 

shown in Figure 16, the SSA algorithm converged to the 

optimal solution after just 53 iterations, demonstrating the 

fastest performance among all techniques.  

While most algorithms converged to acceptable 𝐶𝑂𝐸 

values (between 0.220 and 0.227 $/kWh), only SSA 

achieved the optimal trade-off between low 𝐶𝑂𝐸, minimal 

fuel usage, and system reliability. Although its fuel cost was 

slightly higher due to fewer batteries (leading to more DG 

usage), SSA still delivered the best overall system 

economics.  

The SSA method outperforms other optimization 

techniques by reaching the minimum values faster and 

more effectively. Simulation results confirm that the 

configuration with the lowest 𝐿𝐶𝐶 and 𝐿𝑃𝑆𝑃 within the 

given constraints achieves the lowest 𝐶𝑂𝐸. SSA predicts 

an optimal 𝐶𝑂𝐸 of 0.21975 $/kWh, a life cycle cost (𝐿𝐶𝐶) 

of 4.5433108 $, and an 𝐿𝑃𝑆𝑃  of 0.0499-meeting the 

acceptable limit of 𝐿𝑃𝑆𝑃 ≤ 0.05. 

The SSA algorithm calculates 78 WTs, 134,946 PV 

modules, 29,056 battery banks, and 21 DG units to 

minimize 𝐶𝑂𝐸  at the chosen site. The 𝐶𝑂𝐸  obtained 

through SSA demonstrates that the hybrid microgrid system 

can provide cost-effective electricity to the remote town. 

Figure 17 and Figure 18 display the objective function 

components, including life cycle cost (𝐿𝐶𝐶) and fuel cost, 

for comparison across optimization methods. 

Although SSA provides the lowest 𝐶𝑂𝐸, it incurs the 

highest gasoline cost. This is because SSA minimizes the 

number of battery storage units (29,056), leading to higher 

initialization and replacement costs. As a result, reducing 

the number of battery storage units lowers 𝐶𝑂𝐸. However, 

if the storage capacity is decreased, the DG operates longer, 

increasing fuel consumption and raising the annual fuel cost. 

6.2 Uncertainty analysis  

This study assesses how wind speed and load demand 

uncertainty affect IHRES performance. Wind speed is 

predicted using MLE and LSM (These methods were used 

on historical hourly wind data (8760 hours), ensuring a 

realistic simulation of wind speed variability across the year) 

to estimate the Weibull distribution’s scale and shape 

parameters. With these parameters and actual wind data 

from New Minya, Egypt, a wind speed probability 

distribution is shown in Fig. 19, and a forecast is provided 

in Fig. 20. 

The demand load uncertainty is analyzed using a Monte 

Carlo simulation, where the mean and standard deviation of 

the load (kW) are computed to form a probability 

distribution for the actual demand load, as shown in Fig. 21. 

This allows for the expression of the uncertain demand load, 

as depicted in Fig. 22. 



Optimization-Based Metaheuristic Techniques for Sizing and Managing Uncertainty in Hybrid Renewable Energy Systems Considering Demand-Side Challenges        117 

 

Table 1 The technical specifications of the IHRES 
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WT 1 Enercon-1 330 34 3 13 34 50 
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Model JKM400M-72H-V 

WT 2 ACSA_1 225 27 3.5 13.5 25 50 Maxpower 400 Watt 

WT 3 Fuhrlander_3 250 50 2.5 15 25 42 Length 2008 mm 

WT 4 Ecotecnia_2 600 44 4 14.5 25 45 Width 1002 mm 

WT 5 ITP-1 250 30 3 12 25 50 Thickness 40 mm 

WT 6 NEPC_3 400 31 4 15 25 36 
Module 

Efficiency 
16.3 % 

WT 7 
Southern 

Wind Farms 
225 29.8 4 15 25 45 Operating 

Temperature 
-10 : 85 0C 

WT 8 Enercon_2 330 33.4 3 13 34 37 

WT 9 NEPC_2 250 27.6 4 17 25 45 
Temperature 

Coefficient 
 % 

WT 10 
India Wind 

Power 
250 29.7 3 15 25 50 

Table 2 The technical specifications of the IHRES 
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Model 
RS Lead Acid-SSIG 06 490-

Battery 
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Model DGK125F 

Nominal Capacity (SBAT) 490 Ah Phase 3 Ph 

Nominal Voltage (VBAT) 6 Volt Rated Output 100 kW 

Round Trip Efficiency (𝜂𝑟𝑏𝑎𝑡) 85 % Frequency 50 Hz 

DOD 80 % Power Factor 80 % 

Internal Resistance < 0.005 Ω Dry Weight 2990 Kg 

Operating Temperature -20 : 45  0C 

Net Weight 3670 Kg Self-discharge rate (%/day) 

(σ) 
0.2 % 

Table 3 The economic values of the IHRES 

Item 
WT  

(kW) 

WT  

Civil Work  

(kW) 

PV (kW) 

PV  

Civil Work 

(kW) 

Battery (kW) DG (kW) 

Dual 

Converter 

(kW) 

𝐂𝐈𝐧𝐢𝐭𝐢𝐚𝐥_𝐂𝐚𝐩𝐢𝐭𝐚𝐥 ($) 1500 300 1150 460 220 350 300 

𝐂𝐎&𝐌 (%) 3 3 1 1 3 3 Null 

𝐂𝐑𝐞𝐩 ($) 1200 Null Null Null 176 350 270 

𝐕𝐒𝐜𝐚𝐫𝐩 (%) 20 20 10 20 20 20 10 

Salvage Times 2 1 1 1 7 3 3 

Lifetime (Year) 20 25 25 25 4 10 10 

No. of 

Replacements 
1 0 0 0 6 2 2 

Table 4 Comparison between optimization algorithm SSA and other metaheuristic techniques for WT5 

Optimization Techniques WOA MFO PSO ALO DA GRO SSA 

Best Objective Function 0.22717 0.22134 0.22083 0.22055 0.22132 0.22009 0.21957 

Best 

Solution 

WT 80 79 77 78 79 78 78 

PV 135410 135343 135117 135253 135016 135006 134946 

Battery 29416 29330 29227 29287 29186 29110 29056 

DG 21 21 21 21 21 21 21 

Number of Iterations for 

Optimal Solution 
58 64 58 56 72 75 53 

TPC ($) 4.6007e8 4.5766e8 4.5657e8 4.5597e8 4.5749e8 4.5502e8 4.5433e8 

Dump Load (%) 0.04 0.039 0.04 0.04 0.04 0.039 0.038 
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Fig. 14 Flowchart depicting the procedure for applying DSM to the load  
 

 

 

 

 

 

 

 

 

 

 
Fig. 15 COE variation across different optimization algorithms 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 16 Convergence curves of optimization techniques 

 

 

 

 

 

 

 

 

Fig. 17 The life cycle cost ($) of all systems during the project lifetime 

 

 

 

 

 

 

 

Fig. 18 The fuel cost ($) 

 

 

 

 

 

 

Fig. 19 The probability density of the wind speed distribution 

 

 

 

 

 

Fig. 20 The actual and predicted wind speed 

 

 

 

 

 

 

 

 

 

 
Fig. 21 The probability density of the demand load distribution 

 

 

 

 

 

 

 

 

 

 
 

Fig. 22 The actual and predicted demand load 
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These stochastic models are integrated within the 

optimization framework to enhance the robustness and 

reliability of the system design. By incorporating 

probabilistic variations in key input parameters such as 

solar irradiance [84], wind speed, load demand, and 

component availability, the Salp Swarm Algorithm (SSA) 

is able to effectively capture the inherent uncertainties 

present in real-world hybrid renewable energy systems. 

This integration enables the SSA to perform a more 

comprehensive and adaptive sizing process, ensuring that 

the resulting system configuration maintains optimal 

performance under a wide range of possible operational 

scenarios [41]. 

Incorporating uncertainties in wind speed and demand load  

and their impact on key performance indicators such as 

𝐶𝑂𝐸 , 𝐿𝑃𝑆𝑃 , and dummy energy, as shown in Table 5, 

affects IHRES constraints (𝐿𝑃𝑆𝑃 and dummy energy). For 

the predicted wind speed (standard deviation: 1.994 m/s, 

average: 5.087 m/s, RMSE: 2.867 m/s, MAE: 2.265 m/s), 

the 𝐶𝑂𝐸  decreased from 0.21957 ($/kWh) to 0.2133 

($/kWh), and the 𝐿𝑃𝑆𝑃 dropped from 5% to 4.43%, with 

dummy energy increasing three times the optimized value. 

For the demand load uncertainty (standard deviation: 10231 

kW, average: 22583 kW, RMSE: 14251 kW, MAE: 11610 

kW), the 𝐶𝑂𝐸 increased from 0.21957 ($/kWh) to 0.2503 

($/kWh), 𝐿𝑃𝑆𝑃  rose from 5% to 10.28%, and dummy 

energy grew fivefold. 

The next figures illustrate how these uncertainties affect 

system performance, sizing decisions, and economic 

outcomes. By visualizing the impact of different 

uncertainty sources individually and in combination, these 

figures provide insight into the robustness of the proposed 

IHRES configuration under variable real-world conditions. 

This analysis supports the importance of including 

uncertainty handling within the optimization framework. 

6.3 Implementation of the optimal case 

Figure 23 illustrates the hourly power variations for the 

hybrid system under the best SSA scenario. It includes the 

following: load demand (𝑃𝑙𝑜𝑎𝑑  ), power from PV panels, 

WTs, and renewable sources ( 𝑃𝑊𝑇 + 𝑃𝑃𝑉  ), net power, 

battery charging and discharging power 

(𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ), battery SOC, DG fuel 

consumption, and operating units, dump load power 

(𝑃𝐷𝑢𝑚𝑝), and LPSP. 

 

 

Due to low wind speeds, DG units operate at varying power 

levels to meet energy needs when PV and WT generation is 

insufficient, and the battery's SOC is low. The dump load 

absorbs excess power during peak renewable output when 

the load demand and battery capacity are exceeded. 

Figure 24 presents the weekly simulation results over a 

168-hour period without applying the DSM technique, 

showing changes in load power (𝑃𝑙𝑜𝑎𝑑), WT and PV power 

( 𝑃𝑊𝑇 + 𝑃𝑃𝑉  ), battery charging/discharging 

(𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔), DG power (𝑃𝐷𝐺), dump 

load (𝑃𝐷𝑢𝑚𝑝), and LPSP. This example highlights two peaks 

in the daily load curve, helping to explain the optimization 

algorithm. 

The first peak at 1:00 PM is caused by high temperatures, 

which require air conditioning. The second peak occurs 

around 6:00 PM, after dusk. At night and early morning, the 

DG operates continuously due to low renewable energy 

output. When renewable power exceeds demand, the DG 

shuts off, and excess energy charges the batteries. 

𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔,  𝑃𝐷𝐺, 𝑃𝐷𝑢𝑚𝑝, and LPSP will be shown. 

Figure 25 shows that applying a 5% load shifting 

DSM technique reduces the COE from 0.2196 to 

0.2191($/kWh). This shift balances energy between deficit 

and surplus periods, making the load curve more adaptable. 

The battery storage system's dummy energy reduces 

reliance on the backup DG, lowering overall system costs. 

After applying the DSM, the variations in load power 

(𝑃𝑙𝑜𝑎𝑑  ), power from WT and PV systems (𝑃𝑊𝑇 + 𝑃𝑃𝑉  ), 

battery charging and discharging 

(𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔), DG output (𝑃𝐷𝐺), dump 

load (𝑃𝐷𝑢𝑚𝑝), and LPSP will be shown. 

In addition, as shown in Fig. 26, the simulation 

results for a particular 168-hour period with the DSM 

technique for 90% of load shifting in the optimal case, 

where the 𝐶𝑂𝐸  has decreased from 0.2196 to 0.1989 

($/KWh). 
 The figures highlight fluctuations in key system 

parameters: load demand (𝑃𝑙𝑜𝑎𝑑), total WT and PV output 

( 𝑃𝑊𝑇 + 𝑃𝑃𝑉  ), battery charging/discharging 

(𝑃𝐵𝑎𝑡_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  & 𝑃𝐵𝑎𝑡_𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔), DG output (𝑃𝐷𝐺), dump 

load (𝑃𝐷𝑢𝑚𝑝), and LPSP values. 

Using the DSM strategy effectively lowers the total system 

cost, as shown in Fig. 27. By aligning demand with 

available renewable energy, fewer DGs and battery banks 

are needed, which in turn reduces LPSP and dump energy. 

Table 5 Uncertainty analysis results 

Uncertainty Aspects St. Dev Mean RMSE MAE COE LPSP EDummy 

Wind Speed 
1.994 

(m/s) 

5.087 

(m/s) 

2.867 

(m/s) 

2.265 

(m/s) 

0.2133 

($/kwh) 

4.43 

(%) 

1.78 

(%) 

Demand Load 
10231 

(kw) 

22583 

(kw) 

14251 

(kw) 

11610 

(kw) 

0.2503 

($/kwh) 

10.28 

(%) 

2.01  

(%) 
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 Fig. 23 Simulation results of the optimum solution for 8760 hours (i.e., one year) of operation obtained from SSA 
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Fig. 24 Simulation results for just one week of operation (168 hours) of the optimum solution derived from SSA without using DSM 
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Fig. 25 Simulation results of the optimum possible solution, derived from SSA, using a 5% load-shifting DSM method over a full week of 

operation (168 hours) 
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Fig. 26 Simulation results of the optimum possible solution, derived from SSA, using a 90% load-shifting DSM method over a week of 

operation (168 hours) 
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Fig. 27 The COE ($/kWh) with load shifting percentage (%) 

7 Conclusion 

This paper develops a high-performance program 

combining multiple metaheuristic algorithms and strategies 

like LF, CC, and DSM for optimizing hybrid 

WT/PV/DG/battery bank systems in New Minya city, 

Egypt. The system design considers uncertainty in natural 

resources (sun and wind) and economic changes based on 

real-time weather data. To improve reliability, IHRES units 

are connected via hybrid DC and AC buses, with a dummy 

load absorbing surplus power once batteries are fully 

charged. 

Seven metaheuristic optimization methods, including 

WOA, MFO, PSO, ALO, DA, GRO, and SSA, which are 

used to determine the optimal configuration for a hybrid 

renewable energy system. SSA showed the fastest 

convergence and highest efficiency in reaching the global 

optimum. This study offers valuable insights for decision-

makers in New Minya, Egypt, showing that hybrid systems 

can lessen reliance on fossil fuels. 

This program efficiently estimates the optimal IHRES 

size, targeting the lowest COE, 5% LPSP, minimal 

greenhouse gases, and dummy energy at 4% of total 

demand load, all while ensuring high reliability and 

performance. The key design parameters include N_WT, 

N_PV, DG capacity, and battery bank size. The following 

summarizes these results: 

• Presenting high-performance metaheuristic algorithms 

that outperform traditional deterministic methods and 

commercial software in solving hybrid RE system 

design challenges. 

• SSA achieves the global optimum with minimal 

computing resources, delivering the lowest cost. It 

requires fewer iterations than other methods and 

demonstrates high efficiency and speed. 

• The multi-objective function optimizes the sizing of the 

hybrid PV, WT, DG, and battery system, reducing 

dummy energy, COE, and LPSP while enhancing 

performance and reliability, improving system 

efficiency. 

• Using DSM strategies, the COE dropped from 0.21957 

to 0.2159 ($/KWh) with 20% load shifting, LF, CC, and 

energy conservation techniques. These approaches 

effectively reduced system component size and LCC 

while meeting load demand. 

• Conducting uncertainty analysis to show the 

intermittent behavior of solar and wind, and their effect 

on power generation from WTs and PV panels. 

8 Limitations and Future Work 

Although this study provides a robust framework for 

optimizing hybrid renewable energy systems, several 

limitations should be acknowledged. The following 

outlines both the main constraints of the current work and 

potential directions for future research: 

8.1 Limitations 

1. Simplified component modeling: The system 
components (PV, WT, battery, DG) were modeled 
using static efficiency and idealized performance 
assumptions. Real-world conditions like degradation, 
temperature effects, and nonlinear converter behavior 
were not fully captured. 

2. Limited DSM modeling: The demand-side 
management strategy used in this study is rule-based 
and assumes full consumer compliance. Real-world 
DSM effectiveness may vary due to behavioral and 
infrastructural factors. 

3. Uncertainty handled statistically: The modeling of 
uncertainty was based on historical distributions 
(Weibull, Monte Carlo) and did not include adaptive 
control or temporal correlation across parameters. 

4. Isolated system scope: The study is limited to 
standalone (off-grid) configurations. Hybrid systems 
operating in grid-connected or microgrid environments 
introduce different challenges and opportunities. 

8.2 Future work 

1. Dynamic component modeling: Future studies can 
incorporate temperature-dependent PV performance, 
battery degradation modeling, and DG fuel efficiency 
curves for greater realism. 

2. Adaptive forecasting and control: Integrating short-
term forecasting (e.g., via machine learning) and 
adaptive control algorithms would allow more 
responsive and robust energy management. 

3. Advanced DSM integration: Future research may 
include price-based or incentive-driven DSM strategies, 
consumer behavior modeling, and automated load 
shifting systems. 

4. Grid-connected system expansion: Exploring hybrid 
system performance in weakly grid-connected or 
islanded microgrid scenarios can support wider 
scalability and improve resilience. 
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