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Abstract— Over 300 sign languages are used worldwide, 

posing challenges for effective communication between 

deaf and hearing individuals. This study presents a 

bilingual sign language recognition (SLR) system using 

deep learning to enhance accessibility for the deaf and 

mute communities. The system processes real-time video 

input, leveraging MediaPipe for hand and body landmark 

extraction. For static gesture classification (e.g., alphabet 

recognition), a Support Vector Machine (SVM) with a 

linear kernel is employed. For dynamic gesture sequences 

(e.g., word-level recognition), a Long Short-Term Memory 

(LSTM) network is used to model temporal patterns. The 

models were trained on large-scale datasets of Arabic and 

English sign languages, achieving recognition accuracies 

exceeding 99% for English letters and over 93% for 

selected Arabic words. The training dataset consists of 

images from Kaggle and real-time videos, and the test 

dataset uses independent real-time videos not seen during 

training. The system supports sign-to-text translation as 

well as voice and text-to-sign conversion through avatars 

or image sequences, promoting inclusive, real-time 

communication across linguistic boundaries. 

Keywords: Deaf and Hard of Hearing (DHH); Long 

Short-Term Memory; MediaPipe; Sign Language 

Recognition (SLR).    

1 Introduction  

Artificial Intelligence (AI) is increasingly applied across 

various fields [1,2]. Sign language is vital for 

communication within the deaf community [3–5]. Over 

time, it has evolved into complete languages across 

cultures. Sign Language Recognition (SLR) aims to 

translate gestures into text or speech, supporting 

communication between deaf and hearing individuals.  

 
Received: 23 May 2025/ Accepted: 07 November 2025 

  Asmaa G. Seliem, asmaseliem90@gmail.com  

Shaimaa Mohamed Elembay, shimaa.mohamed@eng.mti.edu.eg,  

Mohamed Nasser Elshayeb, melshayeb508@gmail.com 

1.Modern University for information and technology 

2.Faculty of Engineering, Biomedical department, at Modern 

University for Technology & Information (MTI) 

 

 

Hearing loss affects an estimated 466 million people 

globally, presenting significant challenges in 

communication, social integration, and access to essential 

services [6]. Sign language is not universal, with different 

standards existing across countries, such as the notable 

differences between Egyptian and Libyan Sign Language. 

Additionally, regional variations, akin to accents or slang, 

further complicate understanding. 
 

Misunderstandings can have severe consequences, such as 

in legal situations or during medical consultations. 

Hearing-impaired individuals often face discrimination 

during job applications and interviews. Recruiters may 

find it cumbersome to accommodate their needs, leading 

to feelings of neglect. Telephone interviews are nearly 

impossible without an interpreter, and in-person interviews 

can be challenging if the interviewer is unprepared. 

Moreover, deaf individuals are twice as likely to suffer 

from psychological issues such as depression and anxiety, 

primarily due to feelings of isolation. Most deaf children 

are born to hearing parents, yet regular use of sign 

language within these families remains limited. As Tegan 

Howell et al. [7] reported, only a small percentage of 

Australian families with deaf or hard-of-hearing children 

use sign language at home, contributing to social and 

emotional isolation among these children. 
 

Recent advancements in deep learning and computer 

vision have shown great promise in enhancing SLR 

systems. Dakhli and Bakari [8] demonstrated how 

integrating both manual and non-manual 

components—such as facial expressions and body 

posture—significantly improves recognition accuracy. 

Complementing this, Zhang and Jiang [9] provided a 

comprehensive overview of cutting-edge deep learning 

approaches, including CNNs, RNNs, and Transformers, 

that are advancing the capabilities of modern SLR systems. 

Studies by Padden and Humphries highlight the cultural 

significance of sign languages and the need for inclusive 

communication tools, while the World Health 

Organization emphasizes the global impact of hearing loss 

and the importance of accessible communication 

technologies [10]. 
 

As highlighted by Madhiarasan and Roy [11], 

understanding the variety of sign language modalities and 

datasets was essential for building accurate and inclusive 
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SLR frameworks. Najib [12] emphasized how machine 

learning techniques are being leveraged to interpret sign 

language in real time, reducing communication barriers 

for the deaf community. Bansal et al. [13] further explored 

the role of intelligent systems and nature-inspired 

algorithms in enhancing the performance and adaptability 

of modern SLR solutions. These developments validate 

the ongoing need for robust and socially responsive SLR 

technologies to support the inclusion and well-being of 

deaf individuals. 
 

Leveraging the power of assistive technology can 

significantly enhance the quality of life for individuals 

with disabilities by opening up new opportunities and 

expanding their range of options. 
 

Significant advancements in AI have led to the 

development of powerful tools and frameworks for image 

and sign language recognition. Deep learning libraries 

such as TensorFlow and PyTorch provide robust platforms 

for training and deploying convolutional and temporal 

neural models, while OpenCV remains a cornerstone for 

image preprocessing and real-time video analysis. 

Pretrained models like MediaPipe and OpenPose enable 

efficient hand and body pose estimation. Additionally, 

recent hybrid deep-learning approaches that combine 

spatial and temporal cues, such as those reviewed by 

Buttar et al. [14], had significantly improved static and 

dynamic sign recognition. A comprehensive, 25-year 

survey of Continuous Sign Language Recognition (CSLR) 

[15] emphasized the critical role of multimodal 

cues—particularly non-manual features such as facial 

expressions and body posture—in enhancing system 

performance. Notably, Hirooka et al. [16] introduced a 

Stack Spatial Temporal Transformer Network that captures 

hierarchical spatial and temporal dependencies across 

multiple sign languages, pushing the boundaries of 

cross-cultural recognition accuracy and efficiency. 
 

This research introduces an AI-powered system designed 

to support real-time communication for deaf and mute 

communities, offering combined solutions that go beyond 

previous research, which primarily focused on sign 

language image recognition and provided only partial 

solutions to the communication challenges faced by deaf 

individuals. The system is implemented as a web-based 

application, offering a low-cost and accessible solution for 

translating Arabic and English sign languages into 

text—and vice versa. Unlike many existing systems that 

rely on specialized gloves or visual markers, the proposed 

approach uses only a standard webcam to capture hand 

and body movements, allowing for natural, markerless 

interaction using bare hands. Through the integration of 

computer vision, machine learning, and deep neural 

networks, the system processes video input in real time to 

recognize sign gestures and convert them into spoken or 

written language. Conversely, it translates voice or text 

input into sign language using either animated avatars or 

sequences of gesture images. 

The novelty of this work lies in its real-time, bilingual 

design that supports both Arabic and English sign 

languages, enabling bidirectional translation between sign, 

text, and speech. Static signs (e.g., letters) are classified 

using SVM, while dynamic gesture sequences (e.g., full 

words) are handled using LSTM networks. This 

combination allows for robust recognition of both 

alphabetic signs and temporally dependent gestures. 
 

To validate our model selection, we briefly experimented 

with alternative classifiers such as CNNs and GRUs; 

however, they introduced higher complexity without 

significant performance gains in our setup. Therefore, 

SVM and LSTM were retained due to their balance of 

accuracy and computational efficiency for static and 

sequential sign recognition, respectively. 
 

Due to dataset limitations, Arabic translation currently 

supports 25 commonly used words and the full alphabet, 

while the English component includes the complete 

alphabet. By bridging the gap in bilingual SLR systems 

and eliminating the need for wearable sensors, this system 

offers a novel and practical solution for inclusive, 

multimodal communication—particularly in 

Arabic-speaking regions where such tools are scarce. 
 

The remainder of this paper is organized as follows: 

Section 2 presents the material and method, starting with 

dataset and data structure. Then, describe the proposed 

system architecture in detail, including the image 

processing pipeline, recognition workflow, and the AI 

models used. Section 3 results and discusses evaluates the 

performance of the models. Finally, Section 4 concludes 

the study and outlines directions for future work. 

2 Martial and Methods 

2.1 The dataset used   

The Arabic sign language dataset used in this study is 

the Arabic Alphabets Sign Language Dataset (ArASL), 

published by Ghazanfar Latif, Jaafar Alghazo, 

Nazeeruddin Mohammad, Roaa AlKhalaf, and Rawan 

AlKhalaf. This dataset, comprising 54,049 images of 

Arabic sign letters, was sourced from Kaggle and is 

available on Mendeley Data [17]. For English sign 

language, we gathered 46,032 images of English letters, 

primarily using a computer camera and OpenCV 

technology. This extensive dataset was crucial for training 

and developing our sign language learning system. 
 

The dataset structure is organized such that each image is 

represented as a row in a CSV file. The first column 

contains the label corresponding to the sign (i.e., the letter 

or word), and the remaining columns store the extracted 

hand landmark coordinates (x, y, z) as a flattened list. If no 

landmarks are detected in a frame, all corresponding 

values are recorded as zeros to preserve structural 

consistency. This standardized format enables seamless 

input into machine learning models. The Arabic dataset 
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comprises 54,049 labeled images across all alphabetic 

signs, while the English dataset includes 46,032 labeled 

images captured via webcam. Each class is balanced to 

ensure fair training and evaluation. 

2.2 Data Structure 

Table 1 illustrates the data structure for Arabic letters (it is 

a part of the data). Each row in the dataset.csv file 

corresponds to an image, with the first column indicating 

the label (gesture category) and the subsequent columns 

containing the flattened list of hand landmarks. If no 

landmarks are detected, the columns contain zeros. 
 

Table 1 Arabic letters Data structure for the proposed algorithm 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 ain 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 ain 

0.641 -0.121 0.331 0.649 -0.109 0.373 0.655 -0.101 ain 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000 ain 

0.652 -0.141 0.360 0.662 -0.131 0.404 0.669 -0.124 ain 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ain 

0.649 -0.138 0.362 0.662 -0.131 0.402 0.673 -0.123 ain 

0.656 -0.131 0.355 0.663 -0.124 0.389 0.674 -0.117 ain 

0.650 -0.140 0.352 0.658 -0.128 0.395 0.669 -0.120 ain 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ain 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ain 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ain 

0.660 -0.130 0.339 0.667 -0.119 0.381 0.677 -0.111 ain 

0.680 -0.128 0.334 0.697 -0.114 0.380 0.705 -0.104 ain 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ain 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ain 

The system incorporates robust error handling to 

ensure the integrity and consistency of the dataset. 

Specifically, when no hand landmarks are detected in an 

image, the code automatically fills in zeros for the 

corresponding data points. This approach prevents the 

disruption of the dataset structure and ensures that each 

entry maintains a uniform format, regardless of detection 

success as illustrated in Table 2.  

This method effectively manages potential errors and 

maintains the reliability of the dataset for subsequent 

processing and analysis. Several libraries were utilized for 

processing and managing the data. The `cv2` (OpenCV) 

library played a crucial role in image processing tasks, 

such as reading images (`cv2.imread`), converting color 

spaces (`cv2.cvtColor`), and flipping images (`cv2.flip`). 

The `mediapipe` library provided ready-to-use machine 

learning solutions, particularly for hand tracking 

(`mediapipe.solutions.hands`). The `os` module facilitated 

interaction with the operating system, enabling directory 

navigation and file path handling. Finally, the built-in 

`csv` module was employed for reading and writing CSV 

files, ensuring efficient data management and 

manipulation. 

2.3 Proposed system 

The proposed SLR system incorporates three distinct 

interaction modes designed to enhance communication for 

the deaf community. These include voice-to-sign 

translation, text-to-sign conversion through an 

avatar-based interface, and real-time sign recognition from 

video input. By integrating voice, text, and gesture-based 

inputs, the system facilitates multimodal communication 

and promotes greater accessibility for individuals who are 

deaf or hard of hearing. The overall framework is 

illustrated in Fig. 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Proposed framework 

2.4 Image processing workflow 

The image processing workflow involves several key 

functions to ensure accurate and consistent data extraction, 

as shown in Fig. 2. The process begins with reading the 

image from a specified file path using OpenCV. The image 

is then preprocessed by converting it from BGR to RGB 

color space and flipping it horizontally for uniform 

orientation. A MediaPipe Hands instance is initialized, 

configured to process static images with specific 

parameters. The preprocessed image is then processed 

using this MediaPipe Hands instance. During processing, 

the system checks for the detection of hand landmarks, 

extracting their x, y, and z coordinates into a list. If no 

landmarks are found, the list is filled with zeros to maintain 

data consistency. Finally, the MediaPipe Hands instance is 

closed, releasing the resources it used to ensure efficient 

resource management. 

 

 

 

 

 

Fig. 2 Image processing workflow 

Table 2 Handles potential errors (part of data) 

0.64 -0.12 0.331 0.649 -0.109 0.373 0.655 -0.101 ain 

0.65 -0.14 0.360 0.662 -0.131 0.404 0.669 -0.124 ain 

0.64 -0.13 0.362 0.662 -0.131 0.402 0.673 -0.123 ain 

0.65 -0.13 0.355 0.663 -0.124 0.389 0.674 -0.117 ain 

0.65 -0.14 0.352 0.658 -0.128 0.395 0.669 -0.120 ain 

0.66 -0.13 0.339 0.667 -0.119 0.381 0.677 -0.111 ain 

0.68 -0.12 0.334 0.697 -0.114 0.380 0.705 -0.104 ain 
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2.5 Hand gesture recognition for alphabetic characters 

In this study, the process of hand gesture recognition 

for alphabetic characters involved several key stages. 

Initially, data collection was performed using a computer 

camera and OpenCV to capture images of the English 

alphabet. These images were then subjected to 

preprocessing, wherein hand landmarks were extracted 

using the MediaPipe library. The extracted landmarks, 

along with their corresponding labels, were compiled into 

a CSV file for subsequent analysis. 

Data cleaning followed, where null values were 

removed from the dataset and the data was represented as 

a data frame using the pandas library. For model training, 

an SVM classifier was employed. This classifier was 

trained on features derived from the spatial coordinates of 

hand landmarks (x, y) present in the CSV file. The trained 

model demonstrated a recognition accuracy of 

approximately 99% on both training and testing datasets, 

with additional performance metrics including recall, 

precision, and F1 score. 

Real-time detection was implemented using a web 

camera that captured a sequence of frames. Each frame 

was processed using the MediaPipe framework, 

specifically its Palm Detection and Hands models, to 

detect hand positions and extract landmarks. If hands were 

detected, the landmarks were drawn on the frame using 

the “mp.drawing.draw_landmarks” function, and the 

processed frame was displayed using cv2.imshow. The 

detection loop continued until the 'Esc' key was pressed, at 

which point resources were released. 

For Arabic Sign Language (ArASL) alphabets, the 

process was similar, with the data collected from the 

"ArASL_Database_54K_Final" available on Kaggle. The 

application offered three interactive options: 'S' to add the 

predicted letter to the current string, 'D' to delete the last 

letter, and 'Esc' to quit the application. 

2.6 Hand gesture recognition for words 

This study details the methodology employed for 

recognizing hand gestures corresponding to Arabic words 

through a series of systematic steps as presented in Fig. 3. 

 

Fig. 3 Hand recognition workflow 

1. Data Collection: The data collection process involves 

real-time video capture using a webcam. The camera 

streams a sequence of frames, which are processed by the 

MediaPipe library. Specifically, landmarks from the upper 

part of the body, indexed from 0 to 22 in MediaPipe, are 

used to train the Arabic word recognition system. The data 

collection process includes creating directories for each 

action and sequence to organize and prevent overwriting 

of existing data. The video capture loop iterates through 

each action and sequence, capturing frames, processing 

them with the mediapipe_detection function, and drawing 

landmarks using the draw_landmarks function. Key points 

for pose, face, and both hands are extracted from the 

results. If any landmarks are absent, zeros are appended to 

ensure data consistency. These key points are then 

flattened into a 1D array and saved as .npy files. The 

processed frames, with drawn landmarks, are displayed in 

real-time, and the loop terminates when the 'q' key is 

pressed. 

2. Data Preprocessing: Data preprocessing involves 

several key steps using MediaPipe models. Initially, 

images are converted from BGR to RGB format, as 

MediaPipe models require RGB input. To optimize 

performance, the image is temporarily set as non-writable 

during model processing. The MediaPipe model processes 

the image to detect landmarks, and the results are returned. 

After processing, the image's writeability is restored and 

converted back to BGR format for further use with 

OpenCV. The extract_keypoints function then extracts key 

points from various body parts, including pose landmarks, 

face landmarks, left hand landmarks, and right-hand 

landmarks. If no landmarks for the left or right hand are 

detected, an array of zeros with a shape of 21x3 is 

returned. All extracted key points are concatenated into a 

single array. 

3. Model Training: The model training phase utilizes 

Long LSTM networks, which are particularly effective for 

processing and understanding sequences due to their 

ability to retain long-term dependencies and capture 

temporal dynamics. LSTM models are well-suited for sign 
language recognition, where the sequence and timing of 

gestures are crucial. The LSTM model is trained on a 

dataset of labeled sign language gestures, learning to map 

input sequences to their corresponding labels. After 

training, the model is saved to preserve the learned 

weights. 

4. Model Evaluation: The performance of the trained 

model is evaluated by computing training and testing 

accuracies. A confusion matrix is also plotted to visually 

assess the model's performance across different classes. 

5. Real-Time Recognition: Real-time recognition 

involves several post-processing steps to ensure accurate 

and efficient gesture detection. Initially, images are 

converted from BGR to RGB format as MediaPipe models 

expect RGB input. To enhance performance, images are 

set as non-writable during model processing. After 

processing, images are converted back to BGR format, for 

consistent display with OpenCV. Drawing utilities from 

MediaPipe are initialized to annotate landmarks on the 

images. 
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The real-time inference process consists of: 

I. Initialization: Opening the webcam and initializing 

the MediaPipe holistic model. 

II. Frame Capture: Capturing a frame from the 

webcam and processing it to detect landmarks. 

III. Landmark Detection: Detecting and drawing face, 

pose, and hand landmarks on the frame. 

IV. Prediction: Extracting key points from the detected 

landmarks and using them to make predictions 

with the pre-trained model. Consistent predictions 

are added to the sentence. 

V. Visualization: Displaying the predicted action on 

the video feed and showing the frame in a window. 

VI. Termination: The loop continues until the 'q' key is 

pressed, after which resources are released and 

windows are closed. 

2.7 Using AI for the proposed system 

2.7.1 Support vector machine  
 

Support Vector Machines are a supervised learning 

technique used for classification by finding a hyperplane 

that maximizes the margin between two classes. When 

applied to multiclass classification, SVMs utilize 

strategies such as One-vs-One (OvO) and One-vs-All 

(OvA) to handle multiple classes effectively, as shown in 

Fig. 4.  

SVMs employ different kernels to suit various types of 

data. The Linear Kernel is computationally efficient and 

performs well when the number of features is large 

compared to the number of samples. However, it has a 

limited ability to capture complex, non-linear relationships 

within the data. In contrast, the Radial Basis Function 

(RBF) Kernel is suitable for non-linearly separable data, 

as it can transform the input space into a 

higher-dimensional space where classes might become 

separable by a hyperplane. 

The choice between kernels depends on the nature of 

the data. Linear kernels are advantageous when the data 

appears linearly separable or when there are many features 

relative to the number of samples, making them faster to 

train and evaluate. On the other hand, RBF kernels are 

better suited for data with complex, non-linear 

relationships, though they require more computational 

resources and are slower due to the calculation of pairwise 

distances in high-dimensional spaces.  
 

2.7.2 LSTM (working Idea)  
 

Long Short-Term Memory (LSTM) networks are a type 

of RNN designed to address the vanishing gradient 

problem and capture long-term dependencies in sequential 

data, as shown in Figure 7. The LSTM architecture 

includes a chain structure with four neural networks and 

various memory blocks called cells. 

LSTMs use backpropagation through time to adjust 

parameters based on the error between predicted and 

actual outputs. This approach allows gradients to flow 

through multiple time steps, enabling the network to learn 

from experiences and refine its predictions accordingly. 

 

(a) One-vs-One 

 

(b) One-vs-All 

Fig. 4 Multiclass classification tasks using different strategies 

3 Results and Discussion 

The real-time performance of the proposed SLR system 

is influenced by several practical factors, including latency, 

ambient lighting, and camera quality. Latency primarily 

depends on the processing time required for image 

acquisition, landmark extraction, and model inference. In 

our implementation, we utilized a standard laptop webcam 

(720p resolution, 30 fps) under typical indoor lighting 

conditions. While the system maintained stable 

performance with minimal delay, variable 

lighting—especially low-light or high-glare environments, 
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was observed to affect the accuracy of hand and body 

landmark detection. Additionally, lower-resolution or 

low-frame-rate cameras may hinder precise tracking of 

dynamic gestures. To mitigate these issues, basic 

preprocessing techniques such as brightness normalization 

and landmark smoothing were applied. For future 

deployments, incorporating adaptive exposure control, 

lightweight model quantization, and GPU acceleration can 

further reduce latency and improve system responsiveness 

in diverse real-time scenarios. 

3.1 Voice and text to sign language 

The microphone can be activated to capture spoken 

language, which is then translated into sign language 

sequences represented by a series of images illustrating 

individual letters, as shown in Fig. 5. Additionally, written 

text can be converted into sign language through the use 

of an avatar, as depicted in Fig. 6. 
 

 

Fig. 5 Web page used in translating spoken language into sign 

language as sequence of several images represents English 

letters 

 

 

Fig. 6 Web page for Text-to-Sign Language translation through 

animated avatars or video sequences 

3.2 Sign language to text in real time 

a) English letters result  

In this subsection, we present the outcomes of our 

English letter detection algorithm. Various samples of 

detected English letters are illustrated in Fig. 7. These 

examples demonstrate the accuracy and effectiveness of 

our system in recognizing and translating spoken and 

written inputs into corresponding sign language letters. 

Each sample in Fig. 7 highlights the system's capability to 

accurately capture and represent the nuances of different 

letters, showcasing the robustness of our detection 

methodology. 

 

Fig. 7 Detection of English letters in some samples. 

In Fig. 8, a screenshot of a webpage is displayed. This 

webpage is designed to detect English sign language for 

the phrase “Hello world” and convert it into written 

English words and sentences, as well as into an audio 

format. 

 

Fig. 8 Screen shoot of a webpage during detection of a sentence 

(“Hello World”), sample for entering Letter D in world 

The model's accuracy using a Support Vector Machine 

(SVM) with a linear kernel achieved 99.95% during 

training and 98.26% during testing. Figure 9 presents the 

confusion matrix for the testing phase, detailing the 

performance of the model in classifying English letters. 

The matrix provides a comprehensive overview of the 

model's predictive capabilities, illustrating the number of 

correct and incorrect predictions for each letter, thus 

allowing for a detailed assessment of its accuracy and 

areas for potential improvement. 
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Fig. 9 Confusion matrix for testing the detection of English 

letters 

b) Arabic letters results  

Some samples of Arabic alphabet detection are shown in 

Fig. 10. 

 

Fig. 10 Detection of the Arabic alphabet in some samples 

The SVM model with a linear kernel achieved an 

accuracy of 97.75% during training and 92.24% during 

testing. Similarly, the SVM model with a Radial Basis 

Function (RBF) kernel achieved 96.65% training accuracy 

and 91.54% testing accuracy. The confusion matrix 

obtained during the testing phase for Arabic letter 

detection is presented in Fig. 11. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Confusion matrix for testing detection of Arabic letters 

c) Arabic words result 

In the context of word detection, a significant challenge 

lies in whether a single frame or image of the upper body 

can accurately represent one or more words. To address 

this, we utilized MediaPipe to prepare upper-body images 

as depicted in Fig. 12. Initially, the LSTM model exhibited 

suboptimal accuracy when trained on a dataset comprising 

25 words. To enhance performance, the dataset was 

reduced to include only 8 words. This adjustment resulted 

in an improved accuracy of 95.95% during training and 

93.75% during testing. Figure 13 illustrates the confusion 

matrix for the testing phase, providing a detailed analysis 

of the model's performance in detecting some of these 8 

Arabic words. This matrix offers insights into the 

classification accuracy and highlights the specific areas 

where the model performs well and where it requires 

further refinement. 

 

(a) Sample for Arabic words “مساعدة” 

 

(b) Sample for Arabic words “أهلا” 

Fig. 12 Detection of Arabic words 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13 Detection Confusion matrix of 8 Arabic words 
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d) Sign to fully Arabic sentences  

The proposed system translates sign language into 

complete Arabic sentences. This feature allows users to 

convert individual signs into fully formed, grammatically 

correct sentences in Arabic, enhancing communication 

accuracy and efficiency. Figure 14 illustrates this process 

in detail, showcasing how the system processes and 

integrates each sign into coherent and contextually 

appropriate sentences. 

 

 

(a) 

 

(b) 

Fig. 14 Detection of Arabic sentences. 

Despite its strong performance within the defined scope, 

the current system has limitations in scalability and 

gesture complexity. The Arabic vocabulary is limited to 25 

predefined words, and the system focuses on isolated 

rather than continuous signs. Additionally, more nuanced 

gestures involving facial expressions, finger spelling, or 

overlapping hand movements are not yet supported. To 

address these challenges, future work will explore the use 

of continuous sign language datasets, the incorporation of 

non-manual features (e.g., facial and head movements), 

and the implementation of advanced deep learning models 

such as Transformers and Graph Neural Networks (GNNs) 

to improve the modeling of spatial-temporal dependencies 

and broaden vocabulary coverage. 
 

To better evaluate the effectiveness and novelty of our 

proposed bilingual sign language recognition system, we 

conducted a comparative analysis with recent studies in 

the field. Table 3 summarizes key aspects of these studies, 

including the methods used, datasets, application types, 

and achieved accuracy. This comparison highlights the 

strengths of our system in terms of real-time performance, 

bilingual support, and the ability to handle both static and 

dynamic gestures using lightweight architecture. The 

proposed MediaPipe + SVM/LSTM approach 

demonstrates competitive performance compared to prior 

studies. Our system achieved the highest English letter 

recognition accuracy (98.26%) among the compared 

works, outperforming previous CNN-based and 

CNN-LSTM models. For Arabic letters (92.24%) and 

Arabic words (93.75%), the results remain robust despite 

the increased complexity and diversity of the dataset, as 

our model addresses a broader range of classes in a 

real-time, web-based environment with avatar integration. 

While prior research such as Rouabhi et al. (2024) 

reported 95.5% accuracy on ArSL2018 and Alani et al. 

(2021) achieved ~94% using MobileNetV2-A, our results 

indicate that integrating MediaPipe-based feature 

extraction with hybrid classifiers can yield superior or 

comparable accuracy. Slightly lower accuracy in Arabic 

letter recognition is attributed to dataset variability and 

will be targeted in future optimization efforts. 

Table 3  Comparison of Recent Arabic Sign Language 

Recognition Systems with the Proposed Approach 

Study Model Dataset Accuracy Application 

Rouabhi et 

al. (2024) 

[18] 

Pre-trained 

CNN 
ArSL2018 95.5% 

Mobile app 

(real-time) 

Alani et al. 

(2021)[19] 
CNN-LSTM ArSL2018 ~ 94% 

MobileNetV

2-A 

This Study 
MediaPipe + 

SVM/LSTM 

ArASL_5

4K & 

custom 
English 

dataset 

98.26% 
(EN), 

92.24% 

(AR 
letters), 

93.75% 

(AR words) 

Web-based, 

real-time & 
Avatar 

4 Conclusion 

This research has demonstrated the effectiveness of 

integrating advanced machine learning models and 

MediaPipe for real-time SLR and translation. The system 

efficiently translates spoken language into sign language 

sequences and written text into sign language using 

animated avatars. The detection of English letters achieved 

remarkable accuracy, using a linear kernel that reached 

99.95% during training and 98.26% during testing. 

Similarly, the Arabic letters detection model exhibited 

high accuracy, with the SVM using a linear kernel 

achieving 97.75% in training and 92.24% in testing, and 

the Radial Basis Function kernel model achieving 96.65% 

in training and 91.54% in testing. Despite these successes, 

challenges such as the inability to consolidate the research 

into a single webpage and reduced accuracy with larger 

Arabic word datasets were noted. To address these issues, 

future work will focus on enhancing model performance 

through fine-tuning, data augmentation, and exploring 

advanced techniques such as Transformers, Temporal 

Convolutional Networks (TCNs), and Graph Neural 

Networks (GNNs).  
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Additionally, this system holds significant potential for 

real-world deployment in various domains such as 

education, healthcare, and public services, where real-time 

sign language interpretation can improve communication 

accessibility for the Deaf and Hard of Hearing (DHH) 

community. By promoting inclusive communication, the 

proposed system contributes to social equity and the 

broader adoption of assistive technologies. 
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