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Al-Based Framework for Real-Time Recognition of Arabic and English

Sign Languages

Asmaa G. Seliem""”, Shaimaa Mohamed Elembay!, Mohamed Nasser Elshayeb!

Abstract— Over 300 sign languages are used worldwide,
posing challenges for effective communication between
deaf and hearing individuals. This study presents a
bilingual sign language recognition (SLR) system using
deep learning to enhance accessibility for the deaf and
mute communities. The system processes real-time video
input, leveraging MediaPipe for hand and body landmark
extraction. For static gesture classification (e.g., alphabet
recognition), a Support Vector Machine (SVM) with a
linear kernel is employed. For dynamic gesture sequences
(e.g., word-level recognition), a Long Short-Term Memory
(LSTM) network is used to model temporal patterns. The
models were trained on large-scale datasets of Arabic and
English sign languages, achieving recognition accuracies
exceeding 99% for English letters and over 93% for
selected Arabic words. The training dataset consists of
images from Kaggle and real-time videos, and the test
dataset uses independent real-time videos not seen during
training. The system supports sign-to-text translation as
well as voice and text-to-sign conversion through avatars
or image sequences, promoting inclusive, real-time
communication across linguistic boundaries.

Keywords: Deaf and Hard of Hearing (DHH); Long
Short-Term Memory; MediaPipe; Sign Language
Recognition (SLR).

1 Introduction

Artificial Intelligence (Al) is increasingly applied across
various fields [1,2]. Sign language 1is vital for
communication within the deaf community [3-5]. Over
time, it has evolved into complete languages across
cultures. Sign Language Recognition (SLR) aims to
translate gestures into text or speech, supporting
communication between deaf and hearing individuals.
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Hearing loss affects an estimated 466 million people
globally,  presenting  significant  challenges in
communication, social integration, and access to essential
services [6]. Sign language is not universal, with different
standards existing across countries, such as the notable
differences between Egyptian and Libyan Sign Language.
Additionally, regional variations, akin to accents or slang,
further complicate understanding.

Misunderstandings can have severe consequences, such as
in legal situations or during medical consultations.
Hearing-impaired individuals often face discrimination
during job applications and interviews. Recruiters may
find it cumbersome to accommodate their needs, leading
to feelings of neglect. Telephone interviews are nearly
impossible without an interpreter, and in-person interviews
can be challenging if the interviewer is unprepared.
Moreover, deaf individuals are twice as likely to suffer
from psychological issues such as depression and anxiety,
primarily due to feelings of isolation. Most deaf children
are born to hearing parents, yet regular use of sign
language within these families remains limited. As Tegan
Howell et al. [7] reported, only a small percentage of
Australian families with deaf or hard-of-hearing children
use sign language at home, contributing to social and
emotional isolation among these children.

Recent advancements in deep learning and computer
vision have shown great promise in enhancing SLR
systems. Dakhli and Bakari [8] demonstrated how
integrating both manual and non-manual
components—such as facial expressions and body
posture—significantly improves recognition accuracy.
Complementing this, Zhang and Jiang [9] provided a
comprehensive overview of cutting-edge deep learning
approaches, including CNNs, RNNs, and Transformers,
that are advancing the capabilities of modern SLR systems.
Studies by Padden and Humphries highlight the cultural
significance of sign languages and the need for inclusive
communication tools, while the World Health
Organization emphasizes the global impact of hearing loss
and the importance of accessible communication
technologies [10].

As highlighted by Madhiarasan and Roy [I1],
understanding the variety of sign language modalities and
datasets was essential for building accurate and inclusive
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SLR frameworks. Najib [12] emphasized how machine
learning techniques are being leveraged to interpret sign
language in real time, reducing communication barriers
for the deaf community. Bansal et al. [13] further explored
the role of intelligent systems and nature-inspired
algorithms in enhancing the performance and adaptability
of modern SLR solutions. These developments validate
the ongoing need for robust and socially responsive SLR
technologies to support the inclusion and well-being of
deaf individuals.

Leveraging the power of assistive technology can
significantly enhance the quality of life for individuals
with disabilities by opening up new opportunities and
expanding their range of options.

Significant advancements in Al have led to the
development of powerful tools and frameworks for image
and sign language recognition. Deep learning libraries
such as TensorFlow and PyTorch provide robust platforms
for training and deploying convolutional and temporal
neural models, while OpenCV remains a cornerstone for
image preprocessing and real-time video analysis.
Pretrained models like MediaPipe and OpenPose enable
efficient hand and body pose estimation. Additionally,
recent hybrid deep-learning approaches that combine
spatial and temporal cues, such as those reviewed by
Buttar et al. [14], had significantly improved static and
dynamic sign recognition. A comprehensive, 25-year
survey of Continuous Sign Language Recognition (CSLR)
[15] emphasized the critical role of multimodal
cues—particularly non-manual features such as facial
expressions and body posture—in enhancing system
performance. Notably, Hirooka et al. [16] introduced a
Stack Spatial Temporal Transformer Network that captures
hierarchical spatial and temporal dependencies across
multiple sign languages, pushing the boundaries of
cross-cultural recognition accuracy and efficiency.

This research introduces an Al-powered system designed
to support real-time communication for deaf and mute
communities, offering combined solutions that go beyond
previous research, which primarily focused on sign
language image recognition and provided only partial
solutions to the communication challenges faced by deaf
individuals. The system is implemented as a web-based
application, offering a low-cost and accessible solution for
translating Arabic and English sign languages into
text—and vice versa. Unlike many existing systems that
rely on specialized gloves or visual markers, the proposed
approach uses only a standard webcam to capture hand
and body movements, allowing for natural, markerless
interaction using bare hands. Through the integration of
computer vision, machine learning, and deep neural
networks, the system processes video input in real time to
recognize sign gestures and convert them into spoken or
written language. Conversely, it translates voice or text
input into sign language using either animated avatars or
sequences of gesture images.

The novelty of this work lies in its real-time, bilingual
design that supports both Arabic and English sign
languages, enabling bidirectional translation between sign,
text, and speech. Static signs (e.g., letters) are classified
using SVM, while dynamic gesture sequences (e.g., full
words) are handled using LSTM networks. This
combination allows for robust recognition of both
alphabetic signs and temporally dependent gestures.

To validate our model selection, we briefly experimented
with alternative classifiers such as CNNs and GRUs;
however, they introduced higher complexity without
significant performance gains in our setup. Therefore,
SVM and LSTM were retained due to their balance of
accuracy and computational efficiency for static and
sequential sign recognition, respectively.

Due to dataset limitations, Arabic translation currently
supports 25 commonly used words and the full alphabet,
while the English component includes the complete
alphabet. By bridging the gap in bilingual SLR systems
and eliminating the need for wearable sensors, this system
offers a novel and practical solution for inclusive,
multimodal communication—particularly in
Arabic-speaking regions where such tools are scarce.

The remainder of this paper is organized as follows:
Section 2 presents the material and method, starting with
dataset and data structure. Then, describe the proposed
system architecture in detail, including the image
processing pipeline, recognition workflow, and the Al
models used. Section 3 results and discusses evaluates the
performance of the models. Finally, Section 4 concludes
the study and outlines directions for future work.

2 Martial and Methods

2.1 The dataset used

The Arabic sign language dataset used in this study is
the Arabic Alphabets Sign Language Dataset (ArASL),
published by Ghazanfar Latif, Jaafar Alghazo,
Nazeeruddin Mohammad, Roaa AlKhalaf, and Rawan
AlKhalaf. This dataset, comprising 54,049 images of
Arabic sign letters, was sourced from Kaggle and is
available on Mendeley Data [17]. For English sign
language, we gathered 46,032 images of English letters,
primarily using a computer camera and OpenCV
technology. This extensive dataset was crucial for training
and developing our sign language learning system.

The dataset structure is organized such that each image is
represented as a row in a CSV file. The first column
contains the label corresponding to the sign (i.e., the letter
or word), and the remaining columns store the extracted
hand landmark coordinates (x, y, z) as a flattened list. If no
landmarks are detected in a frame, all corresponding
values are recorded as zeros to preserve structural
consistency. This standardized format enables seamless
input into machine learning models. The Arabic dataset
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comprises 54,049 labeled images across all alphabetic
signs, while the English dataset includes 46,032 labeled
images captured via webcam. Each class is balanced to
ensure fair training and evaluation.

2.2 Data Structure

Table 1 illustrates the data structure for Arabic letters (it is
a part of the data). Each row in the dataset.csv file
corresponds to an image, with the first column indicating
the label (gesture category) and the subsequent columns
containing the flattened list of hand landmarks. If no
landmarks are detected, the columns contain zeros.

Table 1 Arabic letters Data structure for the proposed algorithm

ain 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ain 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ain -0.101  0.655 0.373  -0.109 0.649 0.331  -0.121  0.641

ain 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ain -0.124  0.669 0404 -0.131 0.662  0.360 -0.141  0.652

ain 0.000 _ 0.000  0.000 0.000 0.000 0.000 0.000 0.000

ain -0.123  0.673 0402  -0.131  0.662  0.362  -0.138  0.649

ain -0.117  0.674 0389  -0.124  0.663  0.355 -0.131  0.656

ain -0.120  0.669 0.395 -0.128  0.658 0.352  -0.140  0.650

ain 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000

ain 0.000 _ 0.000  0.000 0.000 0.000 0.000 0.000 0.000

ain 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000

ain -0.111 ~ 0.677 0381  -0.119  0.667 0.339  -0.130  0.660

ain -0.104  0.705 0.380 -0.114 0.697 0.334 -0.128  0.680

ain 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000

ain 0.000 _ 0.000  0.000 0.000 0.000 0.000 0.000 0.000

The system incorporates robust error handling to
ensure the integrity and consistency of the dataset.
Specifically, when no hand landmarks are detected in an
image, the code automatically fills in zeros for the
corresponding data points. This approach prevents the
disruption of the dataset structure and ensures that each
entry maintains a uniform format, regardless of detection
success as illustrated in Table 2.

This method effectively manages potential errors and
maintains the reliability of the dataset for subsequent
processing and analysis. Several libraries were utilized for
processing and managing the data. The "cv2' (OpenCV)
library played a crucial role in image processing tasks,
such as reading images (‘cv2.imread’), converting color
spaces (‘cv2.cvtColor'), and flipping images (‘cv2.flip’).
The ‘mediapipe’ library provided ready-to-use machine
learning solutions, particularly for hand tracking
(‘mediapipe.solutions.hands’). The "os’ module facilitated
interaction with the operating system, enabling directory
navigation and file path handling. Finally, the built-in
‘csv' module was employed for reading and writing CSV
files, ensuring efficient data management and
manipulation.

Table 2 Handles potential errors (part of data)

ain -0.101 0.655 0373  -0.109  0.649  0.331 -0.12 0.64

ain_ -0.124  0.669  0.404 -0.131  0.662  0.360  -0.14  0.65

ain _ -0.123  0.673 0402  -0.131  0.662  0.362 -0.13  0.64

ain -0.117  0.674 0389  -0.124  0.663  0.355 -0.13  0.65

ain_ -0.120  0.669  0.395 -0.128  0.658  0.352  -0.14  0.65

ain -0.111 0.677 0.381 -0.119 0.667 0.339 -0.13  0.66

ain -0.104  0.705  0.380  -0.114  0.697 0334 -0.12  0.68

2.3 Proposed system

The proposed SLR system incorporates three distinct
interaction modes designed to enhance communication for
the deaf community. These include voice-to-sign
translation,  text-to-sign  conversion through an
avatar-based interface, and real-time sign recognition from
video input. By integrating voice, text, and gesture-based
inputs, the system facilitates multimodal communication
and promotes greater accessibility for individuals who are
deaf or hard of hearing. The overall framework is
illustrated in Fig. 1.

Proposed SLR Framework
: Video
Voice (text) (Real Time)
Google's display_imag Divided into
speech es(text) Fracis
recognition Function
Text Display sign Mediapipe
Display
sequence of LSTM
sign
1 voice to sign 2 Text to sign (Avatar) 3 real time to sign

Fig. 1 Proposed framework
2.4 Image processing workflow

The image processing workflow involves several key
functions to ensure accurate and consistent data extraction,
as shown in Fig. 2. The process begins with reading the
image from a specified file path using OpenCV. The image
is then preprocessed by converting it from BGR to RGB
color space and flipping it horizontally for uniform
orientation. A MediaPipe Hands instance is initialized,
configured to process static images with specific
parameters. The preprocessed image is then processed
using this MediaPipe Hands instance. During processing,
the system checks for the detection of hand landmarks,
extracting their X, y, and z coordinates into a list. If no
landmarks are found, the list is filled with zeros to maintain
data consistency. Finally, the MediaPipe Hands instance is
closed, releasing the resources it used to ensure efficient
resource management.

Create
Read Preprocess e Extract
image BGRto Me}:haan;:pe [andmarks m;lioasei ;
Open CV RGB , XYandZ o
instance

Fig. 2 Image processing workflow



198

Asma Gamal et al.

2.5 Hand gesture recognition for alphabetic characters

In this study, the process of hand gesture recognition
for alphabetic characters involved several key stages.
Initially, data collection was performed using a computer
camera and OpenCV to capture images of the English
alphabet. These images were then subjected to
preprocessing, wherein hand landmarks were extracted
using the MediaPipe library. The extracted landmarks,
along with their corresponding labels, were compiled into
a CSV file for subsequent analysis.

Data cleaning followed, where null values were
removed from the dataset and the data was represented as
a data frame using the pandas library. For model training,
an SVM classifier was employed. This classifier was
trained on features derived from the spatial coordinates of
hand landmarks (x, y) present in the CSV file. The trained
model demonstrated a recognition accuracy of
approximately 99% on both training and testing datasets,
with additional performance metrics including recall,
precision, and F1 score.

Real-time detection was implemented using a web
camera that captured a sequence of frames. Each frame
was processed using the MediaPipe framework,
specifically its Palm Detection and Hands models, to
detect hand positions and extract landmarks. If hands were
detected, the landmarks were drawn on the frame using
the “mp.drawing.draw_landmarks” function, and the
processed frame was displayed using cv2.imshow. The
detection loop continued until the 'Esc' key was pressed, at
which point resources were released.

For Arabic Sign Language (ArASL) alphabets, the
process was similar, with the data collected from the
"ArASL Database 54K Final" available on Kaggle. The
application offered three interactive options: 'S' to add the
predicted letter to the current string, 'D' to delete the last
letter, and 'Esc' to quit the application.

2.6 Hand gesture recognition for words

This study details the methodology employed for
recognizing hand gestures corresponding to Arabic words
through a series of systematic steps as presented in Fig. 3.

American Sign Language

" Data
Data collection
Preprocessing i Model Training Real Time
Camera (Open fiinre Data cleaning SUM ke
W) (create CSV file)

Fig. 3 Hand recognition workflow

1. Data Collection: The data collection process involves
real-time video capture using a webcam. The camera
streams a sequence of frames, which are processed by the
MediaPipe library. Specifically, landmarks from the upper
part of the body, indexed from 0 to 22 in MediaPipe, are

used to train the Arabic word recognition system. The data
collection process includes creating directories for each
action and sequence to organize and prevent overwriting
of existing data. The video capture loop iterates through
each action and sequence, capturing frames, processing
them with the mediapipe_ detection function, and drawing
landmarks using the draw_landmarks function. Key points
for pose, face, and both hands are extracted from the
results. If any landmarks are absent, zeros are appended to
ensure data consistency. These key points are then
flattened into a 1D array and saved as .npy files. The
processed frames, with drawn landmarks, are displayed in
real-time, and the loop terminates when the 'q' key is
pressed.

2. Data Preprocessing: Data preprocessing involves
several key steps using MediaPipe models. Initially,
images are converted from BGR to RGB format, as
MediaPipe models require RGB input. To optimize
performance, the image is temporarily set as non-writable
during model processing. The MediaPipe model processes
the image to detect landmarks, and the results are returned.
After processing, the image's writeability is restored and
converted back to BGR format for further use with
OpenCV. The extract_keypoints function then extracts key
points from various body parts, including pose landmarks,
face landmarks, left hand landmarks, and right-hand
landmarks. If no landmarks for the left or right hand are
detected, an array of zeros with a shape of 21x3 is
returned. All extracted key points are concatenated into a
single array.

3. Model Training: The model training phase utilizes
Long LSTM networks, which are particularly effective for
processing and understanding sequences due to their
ability to retain long-term dependencies and capture
temporal dynamics. LSTM models are well-suited for sign
language recognition, where the sequence and timing of
gestures are crucial. The LSTM model is trained on a
dataset of labeled sign language gestures, learning to map
input sequences to their corresponding labels. After
training, the model is saved to preserve the learned
weights.

4. Model Evaluation: The performance of the trained
model is evaluated by computing training and testing
accuracies. A confusion matrix is also plotted to visually
assess the model's performance across different classes.

5. Real-Time Recognition: Real-time recognition
involves several post-processing steps to ensure accurate
and efficient gesture detection. Initially, images are
converted from BGR to RGB format as MediaPipe models
expect RGB input. To enhance performance, images are
set as non-writable during model processing. After
processing, images are converted back to BGR format, for
consistent display with OpenCV. Drawing utilities from
MediaPipe are initialized to annotate landmarks on the
images.
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The real-time inference process consists of:

I. Initialization: Opening the webcam and initializing
the MediaPipe holistic model.

II. Frame Capture: Capturing a frame from the
webcam and processing it to detect landmarks.

III. Landmark Detection: Detecting and drawing face,
pose, and hand landmarks on the frame.

IV. Prediction: Extracting key points from the detected
landmarks and using them to make predictions
with the pre-trained model. Consistent predictions
are added to the sentence.

V. Visualization: Displaying the predicted action on
the video feed and showing the frame in a window.

VI. Termination: The loop continues until the 'q' key is
pressed, after which resources are released and
windows are closed.

2.7 Using Al for the proposed system
2.7.1 Support vector machine

Support Vector Machines are a supervised learning
technique used for classification by finding a hyperplane
that maximizes the margin between two classes. When
applied to multiclass classification, SVMs utilize
strategies such as One-vs-One (OvO) and One-vs-All
(OvA) to handle multiple classes effectively, as shown in
Fig. 4.

SVMs employ different kernels to suit various types of
data. The Linear Kernel is computationally efficient and
performs well when the number of features is large
compared to the number of samples. However, it has a
limited ability to capture complex, non-linear relationships
within the data. In contrast, the Radial Basis Function
(RBF) Kernel is suitable for non-linearly separable data,
as it can transform the input space into a
higher-dimensional space where classes might become
separable by a hyperplane.

The choice between kernels depends on the nature of
the data. Linear kernels are advantageous when the data
appears linearly separable or when there are many features
relative to the number of samples, making them faster to
train and evaluate. On the other hand, RBF kernels are
better suited for data with complex, non-linear
relationships, though they require more computational
resources and are slower due to the calculation of pairwise
distances in high-dimensional spaces.

2.7.2 LSTM (working Idea)

Long Short-Term Memory (LSTM) networks are a type
of RNN designed to address the vanishing gradient
problem and capture long-term dependencies in sequential
data, as shown in Figure 7. The LSTM architecture

includes a chain structure with four neural networks and
various memory blocks called cells.

LSTMs use backpropagation through time to adjust
parameters based on the error between predicted and
actual outputs. This approach allows gradients to flow
through multiple time steps, enabling the network to learn
from experiences and refine its predictions accordingly.
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Fig. 4 Multiclass classification tasks using different strategies

3 Results and Discussion

The real-time performance of the proposed SLR system
is influenced by several practical factors, including latency,
ambient lighting, and camera quality. Latency primarily
depends on the processing time required for image
acquisition, landmark extraction, and model inference. In
our implementation, we utilized a standard laptop webcam
(720p resolution, 30 fps) under typical indoor lighting
conditions. While the system maintained stable
performance with minimal delay, variable
lighting—especially low-light or high-glare environments,
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was observed to affect the accuracy of hand and body
landmark detection. Additionally, lower-resolution or
low-frame-rate cameras may hinder precise tracking of
dynamic gestures. To mitigate these issues, basic
preprocessing techniques such as brightness normalization
and landmark smoothing were applied. For future
deployments, incorporating adaptive exposure control,
lightweight model quantization, and GPU acceleration can
further reduce latency and improve system responsiveness
in diverse real-time scenarios.

3.1 Voice and text to sign language

The microphone can be activated to capture spoken
language, which is then translated into sign language
sequences represented by a series of images illustrating
individual letters, as shown in Fig. 5. Additionally, written
text can be converted into sign language through the use
of an avatar, as depicted in Fig. 6.

Speech to Sign Language (The
System use Sign Language)

Say something!

You said: my name is muhammad

sy

Fig. 5 Web page used in translating spoken language into sign
language as sequence of several images represents English
letters

. Fast

SignLang

CTEE

Avatar

ABC“EFGHCHIKLM

Fig. 6 Web page for Text-to-Sign Language translation through
animated avatars or video sequences

3.2 Sign language to text in real time
a) English letters result

In this subsection, we present the outcomes of our
English letter detection algorithm. Various samples of
detected English letters are illustrated in Fig. 7. These
examples demonstrate the accuracy and effectiveness of
our system in recognizing and translating spoken and
written inputs into corresponding sign language letters.
Each sample in Fig. 7 highlights the system's capability to
accurately capture and represent the nuances of different
letters, showcasing the robustness of our detection
methodology.

Fig. 7 Detection of English letters in some samples.

In Fig. 8, a screenshot of a webpage is displayed. This
webpage is designed to detect English sign language for
the phrase “Hello world” and convert it into written
English words and sentences, as well as into an audio

Real Time Sign Language Detection

format.

e Lo

English letters

Fig. 8 Screen shoot of a webpage during detection of a sentence
(“Hello World”), sample for entering Letter D in world

The model's accuracy using a Support Vector Machine
(SVM) with a linear kernel achieved 99.95% during
training and 98.26% during testing. Figure 9 presents the
confusion matrix for the testing phase, detailing the
performance of the model in classifying English letters.
The matrix provides a comprehensive overview of the
model's predictive capabilities, illustrating the number of
correct and incorrect predictions for each letter, thus
allowing for a detailed assessment of its accuracy and
areas for potential improvement.
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Fig. 13 Detection Confusion matrix of 8 Arabic words
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Fig. 11 Confusion matrix for testing detection of Arabic letters
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d) Sign to fully Arabic sentences

The proposed system translates sign language into
complete Arabic sentences. This feature allows users to
convert individual signs into fully formed, grammatically
correct sentences in Arabic, enhancing communication
accuracy and efficiency. Figure 14 illustrates this process
in detail, showcasing how the system processes and
integrates each sign into coherent and contextually
appropriate sentences.

(b)

Fig. 14 Detection of Arabic sentences.

Despite its strong performance within the defined scope,
the current system has limitations in scalability and
gesture complexity. The Arabic vocabulary is limited to 25
predefined words, and the system focuses on isolated
rather than continuous signs. Additionally, more nuanced
gestures involving facial expressions, finger spelling, or
overlapping hand movements are not yet supported. To
address these challenges, future work will explore the use
of continuous sign language datasets, the incorporation of
non-manual features (e.g., facial and head movements),
and the implementation of advanced deep learning models
such as Transformers and Graph Neural Networks (GNNs)
to improve the modeling of spatial-temporal dependencies
and broaden vocabulary coverage.

To better evaluate the effectiveness and novelty of our
proposed bilingual sign language recognition system, we
conducted a comparative analysis with recent studies in
the field. Table 3 summarizes key aspects of these studies,
including the methods used, datasets, application types,
and achieved accuracy. This comparison highlights the
strengths of our system in terms of real-time performance,
bilingual support, and the ability to handle both static and

dynamic gestures using lightweight architecture. The
proposed  MediaPipe + SVM/LSTM  approach
demonstrates competitive performance compared to prior
studies. Our system achieved the highest English letter
recognition accuracy (98.26%) among the compared
works, outperforming previous CNN-based and
CNN-LSTM models. For Arabic letters (92.24%) and
Arabic words (93.75%), the results remain robust despite
the increased complexity and diversity of the dataset, as
our model addresses a broader range of classes in a
real-time, web-based environment with avatar integration.
While prior research such as Rouabhi et al. (2024)
reported 95.5% accuracy on ArSL2018 and Alani et al.
(2021) achieved ~94% using MobileNetV2-A, our results
indicate that integrating MediaPipe-based feature
extraction with hybrid classifiers can yield superior or
comparable accuracy. Slightly lower accuracy in Arabic
letter recognition is attributed to dataset variability and
will be targeted in future optimization efforts.

Table 3 Comparison of Recent Arabic Sign Language
Recognition Systems with the Proposed Approach

Study Model Dataset Accuracy Application
Rouabhi et . .
al, 2024)  Dretrained o018 95.5% Mobile app
(18] CNN (real-time)
Alani et al. o MobileNetV
021)[19] CNN-LSTM  ArSL2018 94% 2A
98.26%
ArASL 5 (EN),
. 4K & 92.24% Web-based,
This Study ?&ﬁ?ﬁgﬁ\; custom (AR real-time &
English letters), Avatar
dataset 93.75%
(AR words)

4 Conclusion

This research has demonstrated the effectiveness of
integrating advanced machine learning models and
MediaPipe for real-time SLR and translation. The system
efficiently translates spoken language into sign language
sequences and written text into sign language using
animated avatars. The detection of English letters achieved
remarkable accuracy, using a linear kernel that reached
99.95% during training and 98.26% during testing.
Similarly, the Arabic letters detection model exhibited
high accuracy, with the SVM using a linear kernel
achieving 97.75% in training and 92.24% in testing, and
the Radial Basis Function kernel model achieving 96.65%
in training and 91.54% in testing. Despite these successes,
challenges such as the inability to consolidate the research
into a single webpage and reduced accuracy with larger
Arabic word datasets were noted. To address these issues,
future work will focus on enhancing model performance
through fine-tuning, data augmentation, and exploring
advanced techniques such as Transformers, Temporal
Convolutional Networks (TCNs), and Graph Neural
Networks (GNNs).
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Additionally, this system holds significant potential for
real-world deployment in various domains such as
education, healthcare, and public services, where real-time
sign language interpretation can improve communication
accessibility for the Deaf and Hard of Hearing (DHH)
community. By promoting inclusive communication, the
proposed system contributes to social equity and the
broader adoption of assistive technologies.
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